Morita Equivalence for C*-algebras.

Alonso Delfín University of Oregon.

October 8, 2020

Abstract

Morita equivalence was adapted to C*-algebras by Marc Rieffel in the 1970's and it has since become a standard tool for analyzing group C*-algebras, crossed products and representations. Roughly speaking two C*-algebras A and B are Morita equivalent if there is a Hilbert (A, B)-bimodule with some compatibility conditions on the inner products.

The main goal of this talk is to show that two Morita equivalent C*-algebras have equivalent categories of representations. Along the way, I will give many accessible examples. The only two perquisites for following most of the talk are to have some familiarity with Hilbert spaces and with the tensor product of modules.

1 A brief review of Hilbert Modules

Definition 1.1. Let A be a C*-algebra and E a complex vector space which is also a right A-module. An A-valued right inner product on E is a map

$$\begin{array}{ccc} E \times E & \to & A \\ (\xi, \eta) & \mapsto & \langle \xi, \eta \rangle_A \end{array}$$

such that for any $\xi, \eta, \eta_1, \eta_2 \in E$, $a \in A$ and $\alpha \in \mathbb{C}$ we have

- 1. $\langle \xi, \eta_1 + \alpha \eta_2 \rangle_A = \langle \xi, \eta_1 \rangle_A + \alpha \langle \xi, \eta_2 \rangle_A$.
- 2. $\langle \xi, \eta a \rangle_A = \langle \xi, \eta \rangle_A a$.
- 3. $\langle \xi, \eta \rangle_A^* = \langle \eta, \xi \rangle_A$.
- 4. $\langle \xi, \xi \rangle_A \geq 0$ in A.
- 5. $\langle \xi, \xi \rangle_A = 0 \Longrightarrow \xi = 0$.

Definition 1.2. Let A be a C*-algebra. A **Hilbert** A-module is a complex vector space E which is a right A-module with an A-valued right inner product and so that E is complete with the norm $\|\xi\| := \|\langle \xi, \xi \rangle_A\|^{1/2}$. We say that E is **full** if $\langle E, E \rangle_A := \text{span}\{\langle \xi, \eta \rangle_A : \xi, \eta \in E\}$ is dense in A.

Example 1.3. Let \mathcal{H} be a Hilbert space with the physicists convention that the inner product is linear in the second variable. Then, \mathcal{H} is clearly a full Hilbert \mathbb{C} -module.

Example 1.4. Any C^* -algebra A is clearly a full Hilbert A-module with inner product given by $(a, b) \mapsto a^*b$. More generally, A^n is also a full Hilbert A-module with the obvious "euclidean" inner product.

Example 1.5. The set of continuous sections of a vector bundle over a compact Hausdorff space X equipped with a Riemannian metric g is a Hilbert C(X)-module.

A main difference between Hilbert modules and Hilbert spaces is that not every bounded linear map between Hilbert A-modules has an adjoint. We will only be interested in those maps that do have an adjoint.

Definition 1.6. Let E and F be a Hilbert A-modules. A map $t: E \to F$ is said to be **adjointable** if there is a map $t^*: F \to E$ such that for any $\xi \in E$, and $\eta \in F$

$$\langle t(\xi), \eta \rangle = \langle \xi, t^*(\eta) \rangle$$

The space of adjointable maps from E to F is denoted by $\mathcal{L}_A(E,F)$ and $\mathcal{L}_A(E) := \mathcal{L}_A(E,E)$.

It's almost immediate that adjointable maps between Hilbert modules are linear and bounded. A standard proof shows that $\mathcal{L}_A(E)$ is a C*-algebra when equipped with the operator norm. We will have special interest for a particular case of andjointable maps, those of "rank 1":

Definition 1.7. Let E and F be a Hilbert A-modules. For $\xi \in E$ and $\eta \in F$, we define a map $\theta_{\xi,\eta} : F \to E$ by

$$\theta_{\xi,\eta}(\zeta) := \xi \langle \eta, \zeta \rangle_A$$

One easily checks that $\theta_{\xi,\eta} \in \mathcal{L}_A(E,F)$, that $(\theta_{\xi,\eta})^* = \theta_{\eta,\xi} \in \mathcal{L}_A(F,E)$ and that $\|\theta_{\xi,\eta}\| \leq \|\xi\| \|\eta\|$. This gives an analogous of the class of rank-one operators on Hilbert spaces. So, we define an analogous of the compact operators by letting

$$\mathcal{K}_A(E,F) := \overline{\operatorname{span}\{\theta_{\xi,\eta} : \xi \in E, \eta \in F\}}$$

It's also not hard to verify that $\mathcal{K}_A(E) := \mathcal{K}_A(E, E)$ is a closed two sided ideal in $\mathcal{L}_A(E)$, whence $\mathcal{K}(E)$ is also a C^* -algebra.

2 Morita Equivalence

Given a Hilbert A-module E, there is a close connection between the C^* -algebras A and $\mathcal{K}(E)$. Observe that E is a left $\mathcal{K}(E)$ -module when equipped with the obvious left action $v \cdot \xi := v(\xi)$. Further, there is a $\mathcal{K}(E)$ -valued left inner product on E defined by

$$(\xi,\eta) := \theta_{\xi,\eta}$$

for any $\xi, \eta \in E$. Indeed:

- $(\xi_1 + \alpha \xi_2, \eta) = \theta_{\xi_1 + \alpha \xi_2, \eta} = \theta_{\xi_1, \eta} + \alpha \theta_{\xi_2, \eta}$.
- $(v\xi, \eta) = \theta_{v\xi, \eta} = v\theta_{\xi, \eta} = v(\xi, \eta).$
- $(\xi, \eta)^* = \theta_{\xi, \eta}^* = \theta_{\eta, \xi} = (\eta, \xi).$
- $\langle (\xi, \xi) \eta, \eta \rangle = \langle \xi \langle \xi, \eta \rangle, \eta \rangle = \langle \xi, \eta \rangle^* \langle \xi, \eta \rangle \ge 0$, whence $(\xi, \xi) \ge 0$.
- If $(\xi, \xi) = 0$, then $\langle \xi, \xi \rangle = 0$ and therefore $\xi = 0$.
- $\|(\xi,\xi)\| = \|\langle \xi,\xi \rangle\|$ (\leq is immediate and \geq requires some play with functional calculus). Form this, it follows that E is complete with the norm induced by (\cdot,\cdot) .

Hence E is also a left Hilbert $\mathcal{K}(E)$ -module. Even better, the right action of A on E is compatible with the left action of $\mathcal{K}(E)$ on E. Indeed, for $v \in \mathcal{K}(E)$, $\xi \in E$ and $a \in A$

$$(v \cdot \xi)a = v(\xi)a = v(\xi a) = v \cdot (\xi a)$$

The correct terminology is to say that E is a Hilbert $(\mathcal{K}(E), A)$ -bimodule.

Definition 2.1. Two C^* -algebras A and B are said to be **Morita equivalent** if there is a Hilbert (A, B)-bimodule E (we use $A(\cdot, \cdot)$ for A-valued inner product and $\langle \cdot, \cdot \rangle_B$ for the B-valued one) such that

- 1. E is a full left Hilbert A-module, E is a full right Hilbert B-module.
- 2. For all $\xi, \eta, \zeta \in E$, $a \in A$ and $b \in B$
 - (2.1) $\langle a\xi, \eta \rangle_B = \langle \xi, a^*\eta \rangle_B$.
 - (2.2) $_{A}(\xi b, \eta) = _{A}(\xi, \eta b^{*}).$
 - (2.3) $_{A}(\xi,\eta)\cdot\zeta=\xi\cdot\langle\eta,\zeta\rangle_{B}.$

If A and B are Morita equivalent C^* -algebras, then the module E implementing the equivalence is called an A-B **imprimitivity bimodule**.

Example 2.2. We already saw that any full Hilbert A-module implements a Morita equivalence between the C^* -algebras A and $\mathcal{K}_A(E)$. In particular, if \mathcal{H} is an infinite dimensional Hilbert space, then \mathbb{C} and $\mathcal{K}(\mathcal{H})$ are Morita equivalent C^* -algebras via the $\mathcal{K}(\mathcal{H})$ - \mathbb{C} imprimitivity bimodule \mathcal{H} .

Example 2.3. Morita equivalence is weaker than isomorphism. Indeed, given $\varphi: A \to B$, an isomorphism of C*-algebras, we can construct an imprimitive bimodule whose underlying space is B, right action of A is $a \cdot b := \varphi(a)b$, left action is left multiplication on B, and inner products are given by

$$_A(b_1, b_2) := \varphi^{-1}(b_1 b_2^*), \qquad \langle b_1, b_2 \rangle_B := b_1^* b_2$$

Example 2.4. Let X be a locally compact Hausdorff space and \mathcal{H} a Hilbert space. The C^* -algebras $A := C_0(X, \mathcal{K}(\mathcal{H}))$ and $B := C_0(X)$ are Morita equivalent. To see this we construct an (A, B) imprimitive bimodule whose underlying space is $C_0(X, \mathcal{H})$ and operations as follows

• Left action $A \curvearrowright C_0(X, \mathcal{H})$ is $(a \cdot f) \in C_0(X, \mathcal{H})$ given by

$$(a \cdot f)(x) := a(x)(f(x))$$

for any $a \in C_0(X, \mathcal{K}(\mathcal{H}))$ and $f \in C_0(X, \mathcal{H})$.

• Right action $C_0(X, \mathcal{H}) \curvearrowleft B$ is $(f \cdot b) \in C_0(X, \mathcal{H})$ given by

$$(f \cdot b)(x) := f(x)b(x)$$

for any $b \in C_0(X)$ and $f \in C_0(X, \mathcal{H})$.

• Left A-valued inner product is $A(f,g) \in C_0(X,\mathcal{K}(\mathcal{H}))$ given by

$$_A(f,g)(x) := \theta_{f(x),g(x)}$$

for $f, g \in C_0(X, \mathcal{H})$.

• Right B-valued inner product is $\langle f, g \rangle_B \in C_0(X, \mathcal{K}(\mathcal{H}))$ given by

$$\langle f, g \rangle_B(x) := \langle f(x), g(x) \rangle_{\mathbb{C}}$$

for $f, g \in C_0(X, \mathcal{H})$.

That $C_0(X, \mathcal{H})$ is indeed a (A, B)-bimodule follows working pointwise and using that \mathcal{H} is a $(\mathcal{K}(\mathcal{H}), \mathbb{C})$ -bimodule. Some analysis is needed to actually check the fullness of the modules but we omit this.

If A and B are Morita equivalent, there is an equivalence between the categories of representations of A and representations of B. To see this, we need to discuss first inner tensor products of Hilbert modules.

3 Inner Tensor product and the Induced representation

Let A and B be C^* -algebras. Suppose E is a Hilbert B-module, that F is a Hilbert A-module and that there is a *-homomorphism $\varphi: B \to \mathcal{L}(F)$. This naturally makes F a left B-module with the action induced by φ . We can then form the algebraic tensor product of E and F over B, denoted by $E \odot_B F$. To do so, we start with the algebraic tensor product $E \odot_F F$ and take the quotient by the subspace generated by

$$\{\xi b \otimes \eta - \xi \otimes \varphi(b)\eta : \xi \in E, \eta \in F, b \in B\}$$

This quotient is $E \odot_B F$. We abuse notation and call the image of $\xi \otimes \eta$ in $E \odot_B F$ also by $\xi \otimes \eta$. Then, $E \odot_B F$ is a right A-module with an action defined by

$$(\xi \otimes \eta)a = \xi \otimes (\eta a)$$

We now define an A-valued inner product on $E \odot_B F$. First we put

$$\langle \xi \otimes \eta, \xi' \otimes \eta' \rangle := \langle \eta, \varphi(\langle \xi, \xi' \rangle) \eta' \rangle$$

for any $\xi, \xi' \in E$ and $\eta, \eta' \in F$. One checks that this is indeed a well defined A-valued inner product on $E \odot_B F$, so to get a Hilbert A-module we complete $E \odot_B F$ with respect to the norm induced by this inner product. We denote the completion $E \otimes_{\varphi} F$ and we call it the interior tensor product of E and F by φ .

Theorem 3.1. If A and B are Morita equivalent C^* -algebras, then the category of representations of A is equivalent to the one on B.

Sketch of Proof. Let E be the A-B imprimitivity bimodule implementing the equivalence and $\pi: B \to \mathcal{L}(\mathcal{H}_{\pi})$ be a representation of B. Write $\langle \cdot, \cdot \rangle_B$ for the B-valued right inner product on E. Then, regarding \mathcal{H}_{π} as a right \mathbb{C} -module, we can form the Hilbert space $E \otimes_{\pi} \mathcal{H}_{\pi}$ whose inner product on elementary tensors looks like

$$\langle \xi_1 \otimes \upsilon_1, \xi_2 \otimes \upsilon_2 \rangle = \langle \upsilon_1, \pi(\langle \xi_1, \xi_2 \rangle_B) \upsilon_2 \rangle)$$

for $\xi_k \in E$ and $\upsilon_k \in \mathcal{H}_B$. We define $\operatorname{Ind} \pi : A \to \mathcal{L}(E \otimes_{\pi} \mathcal{H}_{\pi})$ by first letting

$$[\operatorname{Ind}\pi(a)](\xi\otimes\upsilon)=(a\xi)\otimes\upsilon$$

and then extending to all $E \otimes_{\pi} \mathcal{H}_{\pi}$. Using that A is Morita equivalent to B, this gives a *-homomorphism and therefore Ind_{π} is a representation of A. One checks that π is irreducible if and only if Ind_{π} is irreducible and every irreducible representation of A is of this form. The Functor Ind from the category of representations of A to the one of representations of B is the one implementing the equivalence. " \square "

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE OR 97403-1222, USA. *E-mail address*: alonsod@uoregon.edu