Morita Equivalence for C*-algebras.

Alonso Delfín
University of Oregon.

October 8, 2020

Abstract

Morita equivalence was adapted to C*-algebras by Marc Rieffel in the 1970's and it has since become a standard tool for analyzing group C^{*}-algebras, crossed products and representations. Roughly speaking two C^{*}-algebras A and B are Morita equivalent if there is a $\operatorname{Hilbert}(A, B)$-bimodule with some compatibility conditions on the inner products.

The main goal of this talk is to show that two Morita equivalent C*-algebras have equivalent categories of representations. Along the way, I will give many accessible examples. The only two perquisites for following most of the talk are to have some familiarity with Hilbert spaces and with the tensor product of modules.

1 A brief review of Hilbert Modules

Definition 1.1. Let A be a C^{*}-algebra and E a complex vector space which is also a right A-module. An A-valued right inner product on E is a map

$$
\begin{array}{ccc}
E \times E & \rightarrow & A \\
(\xi, \eta) & \mapsto & \langle\xi, \eta\rangle_{A}
\end{array}
$$

such that for any $\xi, \eta, \eta_{1}, \eta_{2} \in E, a \in A$ and $\alpha \in \mathbb{C}$ we have

1. $\left\langle\xi, \eta_{1}+\alpha \eta_{2}\right\rangle_{A}=\left\langle\xi, \eta_{1}\right\rangle_{A}+\alpha\left\langle\xi, \eta_{2}\right\rangle_{A}$.
2. $\langle\xi, \eta a\rangle_{A}=\langle\xi, \eta\rangle_{A} a$.
3. $\langle\xi, \eta\rangle_{A}^{*}=\langle\eta, \xi\rangle_{A}$.
4. $\langle\xi, \xi\rangle_{A} \geq 0$ in A.
5. $\langle\xi, \xi\rangle_{A}=0 \Longrightarrow \xi=0$.

Definition 1.2. Let A be a C^{*}-algebra. A Hilbert A-module is a complex vector space E which is a right A-module with an A-valued right inner product and so that E is complete with the norm $\|\xi\|:=\left\|\langle\xi, \xi\rangle_{A}\right\|^{1 / 2}$. We say that E is full if $\langle E, E\rangle_{A}:=\operatorname{span}\left\{\langle\xi, \eta\rangle_{A}: \xi, \eta \in E\right\}$ is dense in A.

Example 1.3. Let \mathcal{H} be a Hilbert space with the physicists convention that the inner product is linear in the second variable. Then, \mathcal{H} is clearly a full Hilbert \mathbb{C}-module.

Example 1.4. Any C^{*}-algebra A is clearly a full Hilbert A-module with inner product given by $(a, b) \mapsto a^{*} b$. More generally, A^{n} is also a full Hilbert A-module with the obvious "euclidean" inner product.

Example 1.5. The set of continuous sections of a vector bundle over a compact Hausdorff space X equipped with a Riemannian metric g is a Hilbert $C(X)$-module.

A main difference between Hilbert modules and Hilbert spaces is that not every bounded linear map between Hilbert A-modules has an adjoint. We will only be interested in those maps that do have an adjoint.

Definition 1.6. Let E and F be a Hilbert A-modules. A map $t: E \rightarrow F$ is said to be adjointable if there is a map $t^{*}: F \rightarrow E$ such that for any $\xi \in E$, and $\eta \in F$

$$
\langle t(\xi), \eta\rangle=\left\langle\xi, t^{*}(\eta)\right\rangle
$$

The space of adjointable maps from E to F is denoted by $\mathcal{L}_{A}(E, F)$ and $\mathcal{L}_{A}(E):=\mathcal{L}_{A}(E, E)$.
It's almost immediate that adjointable maps between Hilbert modules are linear and bounded. A standard proof shows that $\mathcal{L}_{A}(E)$ is a C^{*}-algebra when equipped with the operator norm. We will have special interest for a particular case of andjointable maps, those of "rank 1":

Definition 1.7. Let E and F be a Hilbert A-modules. For $\xi \in E$ and $\eta \in F$, we define a map $\theta_{\xi, \eta}: F \rightarrow E$ by

$$
\theta_{\xi, \eta}(\zeta):=\xi\langle\eta, \zeta\rangle_{A}
$$

One easily checks that $\theta_{\xi, \eta} \in \mathcal{L}_{A}(E, F)$, that $\left(\theta_{\xi, \eta}\right)^{*}=\theta_{\eta, \xi} \in \mathcal{L}_{A}(F, E)$ and that $\left\|\theta_{\xi, \eta}\right\| \leq\|\xi\|\|\eta\|$. This gives an analogous of the class of rank-one operators on Hilbert spaces. So, we define an analogous of the compact operators by letting

$$
\mathcal{K}_{A}(E, F):=\overline{\operatorname{span}\left\{\theta_{\xi, \eta}: \xi \in E, \eta \in F\right\}}
$$

It's also not hard to verify that $\mathcal{K}_{A}(E):=\mathcal{K}_{A}(E, E)$ is a closed two sided ideal in $\mathcal{L}_{A}(E)$, whence $\mathcal{K}(E)$ is also a C^{*}-algebra.

2 Morita Equivalence

Given a Hilbert A-module E, there is a close connection between the C^{*}-algebras A and $\mathcal{K}(E)$. Observe that E is a left $\mathcal{K}(E)$-module when equipped with the obvious left action $v \cdot \xi:=v(\xi)$. Further, there is a $\mathcal{K}(E)$-valued left inner product on E defined by

$$
(\xi, \eta):=\theta_{\xi, \eta}
$$

for any $\xi, \eta \in E$. Indeed:

- $\left(\xi_{1}+\alpha \xi_{2}, \eta\right)=\theta_{\xi_{1}+\alpha \xi_{2}, \eta}=\theta_{\xi_{1}, \eta}+\alpha \theta_{\xi_{2}, \eta}$.
- $(v \xi, \eta)=\theta_{v \xi, \eta}=v \theta_{\xi, \eta}=v(\xi, \eta)$.
- $(\xi, \eta)^{*}=\theta_{\xi, \eta}^{*}=\theta_{\eta, \xi}=(\eta, \xi)$.
- $\langle(\xi, \xi) \eta, \eta\rangle=\langle\xi\langle\xi, \eta\rangle, \eta\rangle=\langle\xi, \eta\rangle^{*}\langle\xi, \eta\rangle \geq 0$, whence $(\xi, \xi) \geq 0$.
- If $(\xi, \xi)=0$, then $\langle\xi, \xi\rangle=0$ and therefore $\xi=0$.
- $\|(\xi, \xi)\|=\|\langle\xi, \xi\rangle\|$ (\leq is immediate and \geq requires some play with functional calculus). Form this, it follows that E is complete with the norm induced by (\cdot, \cdot).

Hence E is also a left Hilbert $\mathcal{K}(E)$-module. Even better, the right action of A on E is compatible with the left action of $\mathcal{K}(E)$ on E. Indeed, for $v \in \mathcal{K}(E), \xi \in E$ and $a \in A$

$$
(v \cdot \xi) a=v(\xi) a=v(\xi a)=v \cdot(\xi a)
$$

The correct terminology is to say that E is a Hilbert $(\mathcal{K}(E), A)$-bimodule.

Definition 2.1. Two C^{*}-algebras A and B are said to be Morita equivalent if there is a Hilbert (A, B) bimodule E (we use $A_{A}(\cdot, \cdot)$ for A-valued inner product and $\langle\cdot, \cdot\rangle_{B}$ for the B-valued one) such that

1. E is a full left Hilbert A-module, E is a full right Hilbert B-module.
2. For all $\xi, \eta, \zeta \in E, a \in A$ and $b \in B$
(2.1) $\langle a \xi, \eta\rangle_{B}=\left\langle\xi, a^{*} \eta\right\rangle_{B}$.
(2.2) $A_{A}(\xi b, \eta)={ }_{A}\left(\xi, \eta b^{*}\right)$.
(2.3) ${ }_{A}(\xi, \eta) \cdot \zeta=\xi \cdot\langle\eta, \zeta\rangle_{B}$.

If A and B are Morita equivalent C^{*}-algebras, then the module E implementing the equivalence is called an A - B imprimitivity bimodule.

Example 2.2. We already saw that any full Hilbert A-module implements a Morita equivalence between the C^{*}-algebras A and $\mathcal{K}_{A}(E)$. In particular, if \mathcal{H} is an infinite dimensional Hilbert space, then \mathbb{C} and $\mathcal{K}(\mathcal{H})$ are Morita equivalent C^{*}-algebras via the $\mathcal{K}(\mathcal{H})-\mathbb{C}$ imprimitivity bimodule \mathcal{H}.

Example 2.3. Morita equivalence is weaker than isomorphism. Indeed, given $\varphi: A \rightarrow B$, an isomorphism of C^{*}-algebras, we can construct an imprimitive bimodule whose underlying space is B, right action of A is $a \cdot b:=\varphi(a) b$, left action is left multiplication on B, and inner products are given by

$$
A\left(b_{1}, b_{2}\right):=\varphi^{-1}\left(b_{1} b_{2}^{*}\right), \quad\left\langle b_{1}, b_{2}\right\rangle_{B}:=b_{1}^{*} b_{2}
$$

Example 2.4. Let X be a locally compact Hausdorff space and \mathcal{H} a Hilbert space. The C^{*}-algebras $A:=C_{0}(X, \mathcal{K}(\mathcal{H}))$ and $B:=C_{0}(X)$ are Morita equivalent. To see this we construct an (A, B) imprimitive bimodule whose underlying space is $C_{0}(X, \mathcal{H})$ and operations as follows

- Left action $A \curvearrowright C_{0}(X, \mathcal{H})$ is $(a \cdot f) \in C_{0}(X, \mathcal{H})$ given by

$$
(a \cdot f)(x):=a(x)(f(x))
$$

for any $a \in C_{0}(X, \mathcal{K}(\mathcal{H}))$ and $f \in C_{0}(X, \mathcal{H})$.

- Right action $C_{0}(X, \mathcal{H}) \curvearrowleft B$ is $(f \cdot b) \in C_{0}(X, \mathcal{H})$ given by

$$
(f \cdot b)(x):=f(x) b(x)
$$

for any $b \in C_{0}(X)$ and $f \in C_{0}(X, \mathcal{H})$.

- Left A-valued inner product is ${ }_{A}(f, g) \in C_{0}(X, \mathcal{K}(\mathcal{H}))$ given by

$$
A(f, g)(x):=\theta_{f(x), g(x)}
$$

for $f, g \in C_{0}(X, \mathcal{H})$.

- Right B-valued inner product is $\langle f, g\rangle_{B} \in C_{0}(X, \mathcal{K}(\mathcal{H}))$ given by

$$
\langle f, g\rangle_{B}(x):=\langle f(x), g(x)\rangle_{\mathbb{C}}
$$

for $f, g \in C_{0}(X, \mathcal{H})$.
That $C_{0}(X, \mathcal{H})$ is indeed a (A, B)-bimodule follows working pointwise and using that \mathcal{H} is a $(\mathcal{K}(\mathcal{H}), \mathbb{C})$ bimodule. Some analysis is needed to actually check the fullness of the modules but we omit this.

If A and B are Morita equivalent, there is an equivalence between the categories of representations of A and representations of B. To see this, we need to discuss first inner tensor products of Hilbert modules.

3 Inner Tensor product and the Induced representation

Let A and B be C^{*}-algebras. Suppose E is a Hilbert B-module, that F is a Hilbert A-module and that there is a $*$-homomorphism $\varphi: B \rightarrow \mathcal{L}(F)$. This naturally makes F a left B-module with the action induced by φ. We can then form the algebraic tensor product of E and F over B, denoted by $E \odot_{B} F$. To do so, we start with the algebraic tensor product $E \odot F$ and take the quotient by the subspace generated by

$$
\{\xi b \otimes \eta-\xi \otimes \varphi(b) \eta: \xi \in E, \eta \in F, b \in B\}
$$

This quotient is $E \odot_{B} F$. We abuse notation and call the image of $\xi \otimes \eta$ in $E \odot_{B} F$ also by $\xi \otimes \eta$. Then, $E \odot_{B} F$ is a right A-module with an action defined by

$$
(\xi \otimes \eta) a=\xi \otimes(\eta a)
$$

We now define an A-valued inner product on $E \odot_{B} F$. First we put

$$
\left\langle\xi \otimes \eta, \xi^{\prime} \otimes \eta^{\prime}\right\rangle:=\left\langle\eta, \varphi\left(\left\langle\xi, \xi^{\prime}\right\rangle\right) \eta^{\prime}\right\rangle
$$

for any $\xi, \xi^{\prime} \in E$ and $\eta, \eta^{\prime} \in F$. One checks that this is indeed a well defined A-valued inner product on $E \odot_{B} F$, so to get a Hilbert A-module we complete $E \odot_{B} F$ with respect to the norm induced by this inner product. We denote the completion $E \otimes_{\varphi} F$ and we call it the interior tensor product of E and F by φ.

Theorem 3.1. If A and B are Morita equivalent C^{*}-algebras, then the category of representations of A is equivalent to the one on B.

Sketch of Proof. Let E be the $A-B$ imprimitivity bimodule implementing the equivalence and $\pi: B \rightarrow$ $\mathcal{L}\left(\mathcal{H}_{\pi}\right)$ be a representation of B. Write $\langle\cdot, \cdot\rangle_{B}$ for the B-valued right inner product on E. Then, regarding \mathcal{H}_{π} as a right \mathbb{C}-module, we can form the Hilbert space $E \otimes_{\pi} \mathcal{H}_{\pi}$ whose inner product on elementary tensors looks like

$$
\left.\left\langle\xi_{1} \otimes v_{1}, \xi_{2} \otimes v_{2}\right\rangle=\left\langle v_{1}, \pi\left(\left\langle\xi_{1}, \xi_{2}\right\rangle_{B}\right) v_{2}\right\rangle\right)
$$

for $\xi_{k} \in E$ and $v_{k} \in \mathcal{H}_{B}$. We define $\operatorname{Ind} \pi: A \rightarrow \mathcal{L}\left(E \otimes_{\pi} \mathcal{H}_{\pi}\right)$ by first letting

$$
[\operatorname{Ind} \pi(a)](\xi \otimes v)=(a \xi) \otimes v
$$

and then extending to all $E \otimes_{\pi} \mathcal{H}_{\pi}$. Using that A is Morita equivalent to B, this gives a $*$-homomorphism and therefore $\operatorname{Ind} \pi$ is a representation of A. One checks that π is irreducible if and only if $\operatorname{Ind} \pi$ is irreducible and every irreducible representation of A is of this form. The Functor Ind from the category of representations of A to the one of representations of B is the one implementing the equivalence.

Department of Mathematics, University of Oregon, Eugene OR 97403-1222, USA.
E-mail address: alonsod@uoregon.edu

