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Abstract

Morita equivalence was adapted to C∗-algebras by Marc Rieffel in the 1970’s and it has since be-
come a standard tool for analyzing group C∗-algebras, crossed products and representations. Roughly
speaking two C∗-algebras A and B are Morita equivalent if there is a Hilbert (A,B)-bimodule with some
compatibility conditions on the inner products.

The main goal of this talk is to show that two Morita equivalent C∗-algebras have equivalent categories
of representations. Along the way, I will give many accessible examples. The only two perquisites for
following most of the talk are to have some familiarity with Hilbert spaces and with the tensor product
of modules.

1 A brief review of Hilbert Modules

Definition 1.1. Let A be a C∗-algebra and E a complex vector space which is also a right A-module. An
A-valued right inner product on E is a map

E × E → A
(ξ, η) 7→ 〈ξ, η〉A

such that for any ξ, η, η1, η2 ∈ E, a ∈ A and α ∈ C we have

1. 〈ξ, η1 + αη2〉A = 〈ξ, η1〉A + α〈ξ, η2〉A.

2. 〈ξ, ηa〉A = 〈ξ, η〉Aa.

3. 〈ξ, η〉∗A = 〈η, ξ〉A.

4. 〈ξ, ξ〉A ≥ 0 in A.

5. 〈ξ, ξ〉A = 0 =⇒ ξ = 0.

Definition 1.2. Let A be a C∗-algebra. A Hilbert A-module is a complex vector space E which is a right
A-module with an A-valued right inner product and so that E is complete with the norm ‖ξ‖ := ‖〈ξ, ξ〉A‖1/2.
We say that E is full if 〈E,E〉A := span{〈ξ, η〉A : ξ, η ∈ E} is dense in A.

Example 1.3. Let H be a Hilbert space with the physicists convention that the inner product is linear in
the second variable. Then, H is clearly a full Hilbert C-module.

Example 1.4. Any C∗-algebra A is clearly a full Hilbert A-module with inner product given by (a, b) 7→ a∗b.
More generally, An is also a full Hilbert A-module with the obvious “euclidean” inner product.

Example 1.5. The set of continuous sections of a vector bundle over a compact Hausdorff space X equipped
with a Riemannian metric g is a Hilbert C(X)-module.
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A main difference between Hilbert modules and Hilbert spaces is that not every bounded linear map between
Hilbert A-modules has an adjoint. We will only be interested in those maps that do have an adjoint.

Definition 1.6. Let E and F be a Hilbert A-modules. A map t : E → F is said to be adjointable if there
is a map t∗ : F → E such that for any ξ ∈ E, and η ∈ F

〈t(ξ), η〉 = 〈ξ, t∗(η)〉

The space of adjointable maps from E to F is denoted by LA(E,F ) and LA(E) := LA(E,E).

It’s almost immediate that adjointable maps between Hilbert modules are linear and bounded. A standard
proof shows that LA(E) is a C∗-algebra when equipped with the operator norm. We will have special interest
for a particular case of andjointable maps, those of “rank 1”:

Definition 1.7. Let E and F be a Hilbert A-modules. For ξ ∈ E and η ∈ F , we define a map θξ,η : F → E
by

θξ,η(ζ) := ξ〈η, ζ〉A

One easily checks that θξ,η ∈ LA(E,F ), that (θξ,η)
∗ = θη,ξ ∈ LA(F,E) and that ‖θξ,η‖ ≤ ‖ξ‖‖η‖. This

gives an analogous of the class of rank-one operators on Hilbert spaces. So, we define an analogous of the
compact operators by letting

KA(E,F ) := span{θξ,η : ξ ∈ E, η ∈ F}

It’s also not hard to verify that KA(E) := KA(E,E) is a closed two sided ideal in LA(E), whence K(E) is
also a C∗-algebra.

2 Morita Equivalence

Given a Hilbert A-module E, there is a close connection between the C∗-algebras A and K(E). Observe
that E is a left K(E)-module when equipped with the obvious left action v · ξ := v(ξ). Further, there is a
K(E)-valued left inner product on E defined by

(ξ, η) := θξ,η

for any ξ, η ∈ E. Indeed:

• (ξ1 + αξ2, η) = θξ1+αξ2,η = θξ1,η + αθξ2,η.

• (vξ, η) = θvξ,η = vθξ,η = v(ξ, η).

• (ξ, η)∗ = θ∗ξ,η = θη,ξ = (η, ξ).

• 〈(ξ, ξ)η, η〉 = 〈ξ〈ξ, η〉, η〉 = 〈ξ, η〉∗〈ξ, η〉 ≥ 0, whence (ξ, ξ) ≥ 0.

• If (ξ, ξ) = 0, then 〈ξ, ξ〉 = 0 and therefore ξ = 0.

• ‖(ξ, ξ)‖ = ‖〈ξ, ξ〉‖ (≤ is immediate and ≥ requires some play with functional calculus). Form this, it
follows that E is complete with the norm induced by (·, ·).

Hence E is also a left Hilbert K(E)-module. Even better, the right action of A on E is compatible with the
left action of K(E) on E. Indeed, for v ∈ K(E), ξ ∈ E and a ∈ A

(v · ξ)a = v(ξ)a = v(ξa) = v · (ξa)

The correct terminology is to say that E is a Hilbert (K(E), A)-bimodule.
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Definition 2.1. Two C∗-algebras A and B are said to be Morita equivalent if there is a Hilbert (A,B)-
bimodule E (we use A(·, ·) for A-valued inner product and 〈·, ·〉B for the B-valued one) such that

1. E is a full left Hilbert A-module, E is a full right Hilbert B-module.

2. For all ξ, η, ζ ∈ E, a ∈ A and b ∈ B

(2.1) 〈aξ, η〉B = 〈ξ, a∗η〉B.

(2.2) A(ξb, η) = A(ξ, ηb∗).

(2.3) A(ξ, η) · ζ = ξ · 〈η, ζ〉B.

If A and B are Morita equivalent C∗-algebras, then the module E implementing the equivalence is called
an A-B imprimitivity bimodule.

Example 2.2. We already saw that any full Hilbert A-module implements a Morita equivalence between
the C∗-algebras A and KA(E). In particular, if H is an infinite dimensional Hilbert space, then C and K(H)
are Morita equivalent C∗-algebras via the K(H)-C imprimitivity bimodule H.

Example 2.3. Morita equivalence is weaker than isomorphism. Indeed, given ϕ : A→ B, an isomorphism
of C∗-algebras, we can construct an imprimitive bimodule whose underlying space is B, right action of A is
a · b := ϕ(a)b, left action is left multiplication on B, and inner products are given by

A(b1, b2) := ϕ−1(b1b
∗
2), 〈b1, b2〉B := b∗1b2

Example 2.4. Let X be a locally compact Hausdorff space and H a Hilbert space. The C∗-algebras
A := C0(X,K(H)) and B := C0(X) are Morita equivalent. To see this we construct an (A,B) imprimitive
bimodule whose underlying space isC0(X,H) and operations as follows

• Left action Ay C0(X,H) is (a · f) ∈ C0(X,H) given by

(a · f)(x) := a(x)
(
f(x)

)
for any a ∈ C0(X,K(H)) and f ∈ C0(X,H).

• Right action C0(X,H) x B is (f · b) ∈ C0(X,H) given by

(f · b)(x) := f(x)b(x)

for any b ∈ C0(X) and f ∈ C0(X,H).

• Left A-valued inner product is A(f, g) ∈ C0(X,K(H)) given by

A(f, g)(x) := θf(x),g(x)

for f, g ∈ C0(X,H).

• Right B-valued inner product is 〈f, g〉B ∈ C0(X,K(H)) given by

〈f, g〉B(x) := 〈f(x), g(x)〉C

for f, g ∈ C0(X,H).

That C0(X,H) is indeed a (A,B)-bimodule follows working pointwise and using that H is a (K(H),C)-
bimodule. Some analysis is needed to actually check the fullness of the modules but we omit this.

If A and B are Morita equivalent, there is an equivalence between the categories of representations of A and
representations of B. To see this, we need to discuss first inner tensor products of Hilbert modules.
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3 Inner Tensor product and the Induced representation

Let A and B be C∗-algebras. Suppose E is a Hilbert B-module, that F is a Hilbert A-module and that
there is a ∗-homomorphism ϕ : B → L(F ). This naturally makes F a left B-module with the action induced
by ϕ. We can then form the algebraic tensor product of E and F over B, denoted by E�B F . To do so, we
start with the algebraic tensor product E � F and take the quotient by the subspace generated by

{ξb⊗ η − ξ ⊗ ϕ(b)η : ξ ∈ E, η ∈ F, b ∈ B}

This quotient is E �B F . We abuse notation and call the image of ξ ⊗ η in E �B F also by ξ ⊗ η. Then,
E �B F is a right A-module with an action defined by

(ξ ⊗ η)a = ξ ⊗ (ηa)

We now define an A-valued inner product on E �B F . First we put

〈ξ ⊗ η, ξ′ ⊗ η′〉 := 〈η, ϕ(〈ξ, ξ′〉)η′〉

for any ξ, ξ′ ∈ E and η, η′ ∈ F . One checks that this is indeed a well defined A-valued inner product on
E �B F , so to get a Hilbert A-module we complete E �B F with respect to the norm induced by this inner
product. We denote the completion E ⊗ϕ F and we call it the interior tensor product of E and F by ϕ.

Theorem 3.1. If A and B are Morita equivalent C∗-algebras, then the category of representations of A is
equivalent to the one on B.

Sketch of Proof. Let E be the A-B imprimitivity bimodule implementing the equivalence and π : B →
L(Hπ) be a representation of B. Write 〈·, ·〉B for the B-valued right inner product on E. Then, regarding
Hπ as a right C-module, we can form the Hilbert space E⊗πHπ whose inner product on elementary tensors
looks like

〈ξ1 ⊗ υ1, ξ2 ⊗ υ2〉 = 〈υ1, π(〈ξ1, ξ2〉B)υ2〉)

for ξk ∈ E and υk ∈ HB. We define Indπ : A→ L(E ⊗π Hπ) by first letting

[Indπ(a)](ξ ⊗ υ) = (aξ)⊗ υ

and then extending to all E ⊗π Hπ. Using that A is Morita equivalent to B, this gives a ∗-homomorphism
and therefore Indπ is a representation of A. One checks that π is irreducible if and only if Indπ is irreducible
and every irreducible representation of A is of this form. The Functor Ind from the category of representa-
tions of A to the one of representations of B is the one implementing the equivalence. “�”
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