

Twisted crossed products of Banach algebras

Alonso Delfín Ares de Parga
(Joint work with Carla Farsi and Judith Packer)

University of Colorado-Boulder

January 7, 2026
JMM 2026: Advances in Operator Algebras

Outline

- 1 Standing Assumptions
- 2 Twisted Crossed Products
- 3 Representations on L^p -spaces

Outline

1 Standing Assumptions

2 Twisted Crossed Products

3 Representations on L^p -spaces

During this talk, A will be a fixed Banach algebra with a contractive approximate identity. That is, there is $(e_\lambda)_{\lambda \in \Lambda}$ in A with $\|e_\lambda\| \leq 1$ and

$$\|e_\lambda a - a\|, \|ae_\lambda - a\| \rightarrow 0.$$

Further, we assume A is nondegenerately represented on a Banach space E : That is, there is an isometric representation $\pi: A \rightarrow \mathcal{B}(E)$ such that

$$\overline{\pi(A)E} := \overline{\text{span}\{\pi(a)\xi : a \in A, \xi \in E\}} = E.$$

These two assumptions give that $M(A)$, the multiplier algebra of A , is nondegenerately represented on E as two sided multipliers:

$$M(A) := \{t \in \mathcal{B}(E) : t\pi(a), \pi(a)t \in \pi(A) \ \forall a \in A\}.$$

We also fix a locally compact group G together with ν_G a left Haar measure. For notational convenience, we let

$$dx := d\nu_G(x).$$

Outline

- 1 Standing Assumptions
- 2 Twisted Crossed Products
- 3 Representations on L^p -spaces

Twisted Actions

A twisted action of G on A is a pair (α, σ)

$$\begin{array}{ll} \alpha: G \rightarrow \text{Aut}(A) & \sigma: G \times G \rightarrow \text{Inv}_1(M(A)) \\ x \mapsto \alpha_x := \alpha(x) & (x, y) \mapsto \sigma_{x,y} := \sigma(x, y) \end{array}$$

such that α is strongly continuous, σ is strictly continuous, and

- ❶ $\alpha_{1_G} = \text{id}_A$, $\sigma(1_G, x) = \sigma(x, 1_G) = \text{id}_{M(A)}$,
- ❷ $\alpha_x(\alpha_y(a)) = \sigma_{x,y} \alpha_{xy}(a) \sigma_{x,y}^{-1}$,
- ❸ $\alpha_z(\sigma_{x,y}) \sigma_{z,xy} = \sigma_{z,x} \sigma_{zx,y}$.

We call (G, A, α, σ) a **TBADS**:

Twisted Banach Algebra Dynamical System.

Let $L^1(G, A, \alpha, \sigma)$ be the Banach space $L^1(G \rightarrow A, \nu_G)$ equipped with the twisted multiplication

$$(f *_{\alpha, \sigma} g)(x) := \int_G f(y) \alpha_y(g(y^{-1}x)) \sigma_{y, y^{-1}x} dy.$$

L^1 -algebra of a TBADS

Proposition

$L^1(G, A, \alpha, \sigma)$ is a Banach algebra with a cai and is nondegenerately represented on itself.

Proof. Consider the Banach bundle $\mathcal{A} = (G \times_{\alpha, \sigma} A, \pi)$ where $G \times_{\alpha, \sigma} A$ is $G \times A$ with multiplication

$$(x, a)(y, b) = (xy, a\alpha_x(b)\sigma_{x,y}),$$

and $\pi: G \times_{\alpha, \sigma} A \rightarrow A$ is the projection onto the first coordinate.

$$L^1(G \mid \mathcal{A}) \stackrel{1}{\cong} L^1(G, A, \alpha, \sigma),$$

so the cai of A transfers to a cai for $L^1(G, A, \alpha, \sigma)$ via a result by Fell-Doran (1988) for general Banach bundles. ■

In fact, if $(\psi_U)_{U \subseteq G}$ is the usual cai for $L^1(G)$ then

$$f_{\lambda, U}(x) := \psi_U(x)e_\lambda$$

is the desired cai for $L^1(G, A, \alpha, \sigma)$.

Covariant Representations

A covariant representation of (G, A, α, σ) is a pair (π, u) together with a Banach space E where

- ① $\pi: A \rightarrow \mathcal{B}(E)$ is a nondegenerate representation,
- ② $u: G \rightarrow \text{Iso}(E)$ is strongly continuous,
- ③ $u_x u_y = \pi(\sigma_{x,y}) u_{xy}$,
- ④ $\pi(\alpha_x(a)) = u_x \pi(a) u_x^{-1}$.

Each (π, u) induces a representation $\pi \rtimes u: L^1(G, A, \alpha, \sigma) \rightarrow \mathcal{B}(E)$ via

$$(\pi \rtimes u)(f) := \int_G \pi(f(x)) u_x dx.$$

Fact: The map $(\pi, u) \mapsto \pi \rtimes u$ is a bijection between covariant representations of (G, A, α, σ) and nondegenerate representations of $L^1(G, A, \alpha, \sigma)$.

Twisted Crossed Products

We fix a class \mathcal{R} consisting of covariant representations of (G, A, α, σ) satisfying $\|\pi\| \leq C_{\mathcal{R}}$ for all $(\pi, u) \in \mathcal{R}$. On $L^1(G, A, \alpha, \sigma)$ define a seminorm by

$$\|f\|_{\mathcal{R}} := \sup\{\|(\pi \rtimes u)(f)\| : (\pi, u) \in \mathcal{R}\}.$$

Definition

The **twisted crossed product of (G, A, α, σ) with respect to \mathcal{R}** is the Hausdorff completion of $L^1(G, A, \alpha, \sigma) / \ker(\| - \|_{\mathcal{R}})$. It will be denoted by $F_{\mathcal{R}}(G, A, \alpha, \sigma)$.

Notice that $F_{\mathcal{R}}(G, A, \alpha, \sigma)$ has a $C_{\mathcal{R}}$ -approximate identity. Indeed,

$$\|(\pi \rtimes u)f_{U,\lambda}\| = \left\| \int_G \pi(\psi_U(x)e_{\lambda})u_x dx \right\| \leq \|\pi\| \int_G \psi_U(x) dx \leq C_{\mathcal{R}}.$$

Since there is an \mathcal{R} -isometric map $\tau: L^1(G, A, \alpha, \sigma) \rightarrow F_{\mathcal{R}}(G, A, \alpha, \sigma)$, the net $(\tau(f_{U,\lambda}))_{U,\lambda}$ is the desired bai.

Universal Property

If $C_{\mathcal{R}} \leq 1$, then $F_{\mathcal{R}}(G, A, \alpha, \sigma)$ is the isometric universal Banach algebra generated by \mathcal{R} -continuous covariant representations.

The formulas

$$\begin{aligned} (\lambda_A(a)f)(x) &:= af(x) & (\rho_A(a)f)(x) &:= f(x)\alpha_x(a), \\ (\lambda_G(y)f)(x) &:= \alpha_y(f(y^{-1}x))\sigma_{y,y^{-1}x} & (\rho_G(y)f)(x) &:= f(xy^{-1})\sigma_{xy^{-1},y}\Delta(y^{-1}), \end{aligned}$$

extend to well defined maps $(\lambda_A, \rho_A): A \rightarrow M(F_{\mathcal{R}}(G, A, \alpha, \sigma))$ and $(\lambda_G, \rho_G): G \rightarrow M(F_{\mathcal{R}}(G, A, \alpha, \sigma))$ such that $((\lambda_A, \rho_A), (\lambda_G, \rho_G))$ is a covariant representation of (G, A, α, σ) on $F_{\mathcal{R}}(G, A, \alpha, \sigma)$.

Theorem (D., Farsi, Packer: 2025)

Let B be a Banach algebra and let (k_A, k_G) be a covariant representation of (G, A, α, σ) on B . If $(k_A \rtimes k_G)(L^1(G, A, \alpha, \sigma))$ is dense in $M(B)$ and $\|(k_A \rtimes k_G)(f)\| = \|f\|_{\mathcal{R}}$ for all $f \in L^1(G, A, \alpha, \sigma)$, then

$$B \stackrel{1}{\cong} F_{\mathcal{R}}(G, A, \alpha, \sigma).$$

Equivalent twisted actions

Two twisted actions (α, σ) and (β, ω) of G on A are *exterior equivalent* if there is $\theta: G \rightarrow \text{Inv}_1(M(A))$ strictly continuous such that

- ① $\beta_x(a) = \theta_x \alpha_x(a) \theta_x^{-1}$,
- ② $\omega_{x,y} \theta_{xy} = \theta_x \alpha_x(\theta_y) \sigma_{x,y}$.

In such case we write $(\alpha, \sigma) \xrightarrow{\theta} (\beta, \omega)$, and for each $(\pi, u) \in \mathcal{R}$ we define the map $v = v_{\pi,u}: G \rightarrow \text{Iso}(E)$ by

$$v_x := \widehat{\pi}(\theta_x) u_x.$$

Let $\mathcal{R}_\theta := \{(\pi, v_{\pi,u}): (\pi, u) \in \mathcal{R}\}$.

Theorem (D., Farsi, Packer: 2025)

If $(\alpha, \sigma) \xrightarrow{\theta} (\beta, \omega)$, then \mathcal{R}_θ is a class of covariant representations of (G, A, β, ω) and

$$F_{\mathcal{R}}(G, A, \alpha, \sigma) \xrightarrow{1} F_{\mathcal{R}_\theta}(G, A, \beta, \omega).$$

Outline

- 1 Standing Assumptions
- 2 Twisted Crossed Products
- 3 Representations on L^p -spaces

L^p -operator algebras

From now on, we fix $p \in [1, \infty)$ and assume that A acts nondegenerately on a separable L^p -space. That is, there is a measure space (Ω_A, μ_A) such that

$$A \subseteq \mathcal{B}(L^p(\Omega_A, \mu_A)) \quad \text{and} \quad \overline{AL^p(\Omega_A, \mu_A)} = L^p(\Omega_A, \mu_A).$$

Let $\mathcal{R}^p = \mathcal{R}^p(G, A, \alpha, \sigma)$ be the class of **all** contractive covariant representations of (G, A, α, σ) on L^p -spaces. We define the **L^p -twisted crossed product** as

$$F^p(G, A, \alpha, \sigma) := F_{\mathcal{R}^p}(G, A, \alpha, \sigma)$$

Corollary

If $(\alpha, \sigma) \xrightarrow{\theta} (\beta, \omega)$, then $F^p(G, A, \alpha, \sigma) \xrightarrow{1} F^p(G, A, \beta, \omega)$.

Proof. $\mathcal{R}^p(G, A, \alpha, \sigma)_{\theta} = \mathcal{R}^p(G, A, \beta, \omega)$. ■

A p -version of the Packer-Raeburn untwisting trick

Let $p \in (1, \infty)$ and consider

$$\text{St}_p(A) := \mathcal{K}(L^p(G)) \otimes_p A \subseteq \mathcal{B}(L^p(G \times \Omega_A, \nu_G \times \mu_A)).$$

Let $p' \in (1, \infty)$ be the Hölder conjugate of p (i.e, $\frac{1}{p} + \frac{1}{p'} = 1$). The map $L^p(G \rightarrow L^{p'}(G \rightarrow A)) \rightarrow \text{St}_p(A)$ given by $\psi \mapsto K_\psi$, where

$$(K_\psi \xi)(x, w) := \int_G \psi(x, y) \xi(y, w) dy,$$

has dense range and is such that $\|K_\psi\| \leq \|\psi\|$.

Theorem (D., Farsi, Packer: 2025)

There is a genuine action β of G on $\text{St}_p(A)$ such

$$\mathcal{K}(L^p(G)) \otimes_p F^p(G, A, \alpha, \sigma) \stackrel{1}{\cong} F^p(G, \text{St}_p(A), \beta).$$

Reduced twisted crossed product

For any nondegenerate representation $\pi_0: A \rightarrow \mathcal{B}(L^p(\Omega, \mu))$, let $E := L^p(G \rightarrow L^p(\Omega, \mu))$ and define $\pi: A \rightarrow \mathcal{B}(E)$ by

$$(\pi(a)\xi)(x) := \pi_0(\alpha_x^{-1}(a))(\xi(x)).$$

Define also $u: G \rightarrow \text{Iso}(E)$ by

$$(u_y\xi)(x) := \widehat{\pi_0}(\alpha_x^{-1}(\sigma_{y, y^{-1}x}))(\xi(y^{-1}x)).$$

Fact: $\text{reg}(\pi_0) := (\pi, u)$ is a covariant representation of (G, A, α, σ) on E . Set $\mathcal{R}_r^p := \{\text{reg}(\pi_0) : \pi_0 \in \text{Rep}^p(A)\}$. We define the **reduced L^p -twisted crossed product** by $F_r^p(G, A, \alpha, \sigma) := F_{\mathcal{R}_r^p}(G, A, \alpha, \sigma)$.

Conjecture

If G is amenable then $F_r^p(G, A, \alpha, \sigma) \stackrel{1}{\cong} F^p(G, A, \alpha, \sigma)$

Conjecture (Rigidity for $p \neq 2$)

$F_r^p(G, A, \alpha, \sigma) \stackrel{1}{\cong} F_r^p(G, A, \beta, \omega) \iff (\alpha, \sigma) \sim (\beta, \omega)$.

Thank you!

Questions?

References, details:

arXiv:2509.24106 [math.FA]