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tanding Assumptions

During this talk, A will be a fixed Banach algebra with a contractive
approximate identity. That is, there is (ex)aca in A with |lex|| <1 and

lexa —all, [laex —a]| — .

Further, we assume A is nondegenerately represented on a Banach space
E: That is, there is an isometric representation 7w: A — B(E) such that

m(A)E = span{n(a)é:a € A,é € E} =E.

These two assumptions give that M(A), the multiplier algebra of A, is
nondegenerately represented on E as two sided multipliers:

M(A) = {t € B(E): tn(a), n(a)t € m(A) Va € A}.

We also fix a locally compact group G together with v a left Haar
measure. For notational convenience, we let

dx = dvg(x).
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Twisted Crossed Products
A twisted action of G on A is a pair («, 0)
a: G — Aut(A) 0: Gx G —Invi(M(A))
x = oy = a(x) (x,y) — Oy = o(x,y)
such that « is strongly continuous, o is strictly continuous, and
Q o, =idy, o(lg, x) = o(x, 1) = idpya),
Qo zxx(zxy(a)) = Gx,yzxxy(a)(r;/;,

Q ‘Xz(Ux,y)Uz,xy = 0z,x0zx,y-
We call (G, A, «, 0) a TBADS:

Twisted Banach Algebra Dynamical System.

Let L'(G, A, &, o) be the Banach space L'(G — A, v¢) equipped with
the twisted multiplication

(f *a,0 8)(x /f Vay(g(y~'x))oy,,1,dy.
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L'-algebra of a TBADS

Proposition

Ll(G, A,a,0) is a Banach algebra with a cai and is nondegenerately
represented on itself.

Proof. Consider the Banach bundle A = (G X 4,6 A, 71) where G X5 A
is G x A with multiplication

(x,a)(y,b) = (xy, a0 (b)ov,y),

and 71: G X406 A — A is the projection onto the first coordinate.

1
LYG|A) = LYG, A, q0),

so the cai of A transfers to a cai for L' (G, A, «, o) via a result by
Fell-Doran (1988) for general Banach bundles. |
In fact, if (Yy)ucc is the usual cai for L'(G) then

Fru(x) = pu(x)ex
is the desired cai for Ll(G, A 0).
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Twisted Crossed Products

Covariant Representations

A covariant representation of (G, A, «, 0) is a pair (71, 1) together with a
Banach space E where

@ m: A — B(E) is a nondegenerate representation,

@ u: G — Iso(E) is strongly continuous,

Q uyuy = 7(0x,y)Uxy,

Q m(ay(a)) = uym(a)uzt.
Each (7, u) induces a representation 77 x u: L'(G, A, a, o) — B(E) via

(rxu)(f) = [ A(f()madx.

Fact: The map (71, u) — 7t x u is a bijection between covariant

representations of (G, A, «, 0) and nondegenerate representations of
LY (G, A, «,0).
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Twisted Crossed Products
Twisted Crossed Products

We fix a class R consisting of covariant representations of (G, A, «, ).
satisfying ||| < Cg for all (7r,u) € R. On LY(G, A, &, ) define a
seminorm by

1fllz = sup{[[ (7 >xxu) ()| (7, u) € R}.

Definition

The twisted crossed product of (G, A, &, o) with respect to R is the
Hausdorff completion of L'(G, A, «, o)/ ker(|| — ||=). It will be denoted
by Fr(G, A, «, 0).

Notice that Fr(G, A, «, 0) has a Cr-approximate identity. Indeed,

7 3 ) furall = H [ Apuenyusix| < 1l [ u(x)dx < Cx.

Since there is an R-isometric map 7: L'(G, A, a,0) — Fr(G, A, «, 0),
the net (7(fu,))u,a is the desired bai.
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Twisted Crossed Products
Universal Property

If Cr <1, then FRr(G, A, «, 0) is the isometric universal Banach algebra
generated by R-continuous covariant representations.
The formulas

(Aa(a)f)(x) = af(x) (pa(a@)f)(x)

(A f)(x) = oy (f(y~x))oy 1, (pc(y)f)(

extend to well defined maps (A4, pa): A = M(FRr(G, A, «,0)) and
Aa,

(
(Ac,pg): G = M(Fr(G, A, a,0)) such that ((Aa,p4), (Ag,Pc)) is a
covariant representation of (G, A, &, 0) on FR(G, A, «,0).

f(x)ax(a),
) = f(xy 1)O_xy*1 yA(y )

=

Theorem (D., Farsi, Packer: 2025)

Let B be a Banach algebra and let (ka,kg) be a covariant representation
of (G,A,a,0) on B. If (ka xkg)(L'(G, A,«,c)) is dense in M(B) and
(ks % ko))l = Ifllz for all f € L}(G, A, &, ), then

1
B Ix(G, A, a,0).
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Twisted Crossed Products
Equivalent twisted actions

Two twisted actions («, o) and (3, w) of G on A are exterior equivalent
if there is 8: G — Invy(M(A)) strictly continuous such that

Q B:(a) = 0y (a)0; L,
e wx’yexy == exax(ey)o_x’y.

In such case we write («, o) 2 (B, w), and for each (7r,u) € R we
define the map v = v,,: G — Iso(E) by

Uy = 71(Ox)hy.

Let Ry = {(7,vzy): (m,u) € R}.

Theorem (D., Farsi, Packer: 2025)

1
FR(G/A/(X/O-) = FRH(G,A,ﬁ,W)-
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LP-operator algebras

From now on, we fix p € [1,00) and assume that A acts nondegenerately
on a separable LP-space. That is, there is a measure space (Q4, p4)
such that

A - B(LP(QA, ,LLA)) and ALP(QA, ,LLA) = LP(QA, FLA)-

Let R? = R¥(G, A, &, 0) be the class of all contractive covariant
representations of (G, A, &, o) on LP-spaces. We define the LP-twisted
crossed product as

FP(G,A,a,0) = Frr(G,A, a,0)

1
If (a,0) £ (B, w), then FP(G, A, a, o) = FP(G, A, B, w).

Proof. RP(G,A,a,0)g = RP(G, A, B, w). |
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A p-version of the Packer-Raeburn untwisting trick

Let p € (1,00) and consider
Sty(A) = KC(LP(G)) @y A C B(LP(G X Qp, %G X 1a).

Let p’ € (1,00) be the Holder conjugate of p (i.e, % —|—% =1). The
map LP(G — L7 (G — A)) — Sty(A) given by ¢ — Ky, where

(Kyt)(xw) = [ w(x )a(yw)dy,

has dense range and is such that ||Kyl|| < [[4]].

Theorem ( D., Farsi, Packer: 2025)

There is a genuine action 3 of G on Sty(A) such

K(LP(G)) ®, FP(G, A, a,0) = F?(G, St (A), B).
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Reduced twisted crossed product

For any nondegenerate representation 7p: A — B(LF(Q, ), let
E:=LP(G — LP(Q,un)) and define 7: A — B(E) b

(m(a)&)(x) = mo (e ' (a)) (&(x)).
Define also u: G — Iso(E) by
(uy&) (x) = (o (0,1,)) (&(y 1)),

Fact: reg(mp) := (7, u) is a covariant representation of (G, A, «, ) on
E. Set RY = {reg(m): my € Rep”(A)}. We define the reduced
LP-twisted crossed product by Prp(G, A 0) = Rf(G' A a0).

1
If G is amenable then Ff(G, A,a,0) 2FP(G,A, a,0)

Conjecture (Rigidity for p # 2)

(G, A, a,0) = FP(G, A, B,w) <= (,0) ~ (B, w).

.
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Thank you!

Questions?

References, details:
arXiv:2509.24106 [math.FA|
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