Productos Cruzados Torcidos de Álgebras de Banach arXiv:2509.24106 [math.FA]

Alonso Delfín Ares de Parga (Colaboración con Carla Farsi y Judith Packer)

Universidad de Colorado-Boulder

20 de Octubre del 2025 58^{vo} Congreso Nacional de la SMM

- Motivación: Acciones Torcidas
- 2 Hipótesis Fijas
- Productos Cruzados
- 4 Representaciones en espacios L^p

- Motivación: Acciones Torcidas
- 2 Hipótesis Fijas
- Productos Cruzados
- 4 Representaciones en espacios L^p

Extensiones de Grupos

Decimos que un grupo E es una extensi'on del grupo N por el grupo G si tenemos una sucesi\'on exacta

$$\{1\} \to N \stackrel{\iota}{\hookrightarrow} E \stackrel{\pi}{\twoheadrightarrow} G \to \{1\}.$$
 (1)

Una sección de (1) es una función $s: G \to E$ que satisface $\pi \circ s = \mathrm{id}_G$.

- En general, una sección no tiene por qué ser un homomorfismo.
- Cuando lo es, hay $\alpha \colon G \to \operatorname{Aut}(N)$ y $E \cong N \rtimes_{\alpha} G$.
- Cuando no lo es, comparamos s(x)s(y) con s(xy).
- Al ser (1) exacta, dicha comparación define $\sigma \colon G \times G \to N$ tal que $s(x)s(y) = \iota(\sigma(x,y))s(xy)$,
- Más aún, $\sigma(x,y)\sigma(xy,z) = \sigma(y,z)\sigma(x,yz)$.

Si α : $G \to \operatorname{Aut}(N)$ satisface $\alpha_x(\alpha_y(n)) = \sigma(x,y)\alpha_{xy}(n)\sigma(x,y)^{-1}$ y ponemos $E = N \rtimes_{\alpha,\sigma} G$ con operación

$$(m,x)\cdot_{\alpha,\sigma}(n,y) := (m\alpha_x(n)\sigma(x,y),xy),$$

entonces $s(x) := (1_N, x)$ da el cociclo σ .

Un ejemplo

Consideremos los grupos $N=\mathbb{T}$ y $G=\mathbb{Z}^2$. Fijemos $\theta\in[0,1]$ y definamos $\sigma_\theta\colon\mathbb{Z}^2\times\mathbb{Z}^2\to\mathbb{T}$ como

$$\sigma_{\theta}(x,y) := \exp(\pi i \theta(x_1 y_2 - x_2 y_1))$$

donde $x = (x_1, x_2), y = (y_1, y_2).$

$$\{1\} \to \mathbb{T} \stackrel{\iota}{\hookrightarrow} \mathbb{T} \rtimes_{\sigma_{\theta}} \mathbb{Z}^2 \stackrel{\pi}{\twoheadrightarrow} \mathbb{Z}^2 \to \{1\}$$

 $\operatorname{con}\,\iota(z)=(z,0_{\mathbb{Z}^2})\,\operatorname{y}\,\pi(z,x)=x.\,\operatorname{El\,grupo}\,\mathbb{T}\rtimes_{\sigma_\theta}\mathbb{Z}^2\operatorname{con\,multiplicación}$

$$(z,x)\cdot_{\sigma_{\theta}}(w,y)\coloneqq(zw\sigma(x,y),xy),$$

es una extención de \mathbb{T} por \mathbb{Z}^2 que no escinde.

Álgebras de grupos

Si $E=N\rtimes_{\alpha}G$ entonces $\mathbb{C}E$, el álgebra del grupo E, es el "producto cruzado" $\mathbb{C}N\rtimes_{\alpha}G$. Más precisamente, $\mathbb{C}E$ es el álgebra de funciones $G\to\mathbb{C}N$ con soporte finito y multiplicación dada por

$$(f *_{\alpha} g)(x) := \sum_{y \in G} f(y) \alpha_y(g(y^{-1}x)).$$

En general, si $E=N\rtimes_{\alpha,\sigma}G$, entonces $\mathbb{C}E$ es el "producto cruzado torcido" $\mathbb{C}N\rtimes_{\alpha,\sigma}G$ que consiste de las funciones $G\to\mathbb{C}N$ con soporte finito y multiplicación dada por

$$(f *_{\alpha,\sigma} g)(x) := \sum_{y \in G} f(y) \alpha_y(g(y^{-1}x)) \sigma(y, y^{-1}x).$$

El objetivo de esta plática es generalizar el comportamiento anterior para álgebras de Banach y grupos localmente compactos.

- Motivación: Acciones Torcidas
- 2 Hipótesis Fijas
- 3 Productos Cruzados
- 4 Representaciones en espacios L^p

En esta platica, A siempre será un álgebra de Banach con una aproximación contráctil de la unidad: Existe una red $(e_{\lambda})_{\lambda \in \Lambda}$ en A con $\|e_{\lambda}\| \leq 1$ y

$$||e_{\lambda}a-a||, ||ae_{\lambda}-a|| \to 0.$$

Además asumimos que A está representada no degeneradamente en un espacio de Banach E: Existe un homomorfismo isométrico $\pi\colon A\to \mathcal{B}(E)$ tal que

$$\pi(A)E := \operatorname{span}\{\pi(a)\xi \colon a \in A, \xi \in E\}$$

es un subespacio denso en E. Ambas hipótesis nos sirven para definir, M(A), el álgebra de multiplicadores de A como

$$M(A) := \{ t \in \mathcal{B}(E) : t\pi(a), \pi(a)t \in \pi(A) \ \forall a \in A \}.$$

Finalmente G siempre será un grupo localmente compacto y fijamos ν_G una medida izquierda de Haar. En particular pondremos

$$dx := d\nu_G(x)$$
.

- Motivación: Acciones Torcidas
- 2 Hipótesis Fijas
- Productos Cruzados
- 4 Representaciones en espacios L^p

Acciones torcidas

Una acción torcida de G en A es un par (α, σ)

$$\alpha \colon G \to \operatorname{Aut}(A)$$
 $\sigma \colon G \times G \to \operatorname{Inv}_1(M(A))$
 $x \mapsto \alpha_x \coloneqq \alpha(x)$ $(x, y) \mapsto \sigma_{x,y} \coloneqq \sigma(x, y)$

tal que lpha es fuertemente continua, σ es estrictamente continua, y

A la tupla (G,A,α,σ) le llamamos un sistema dinámico torcido de Banach.

Definimos $L^1(G,A,\alpha,\sigma)$ como el espacio $L^1(G\to A,\nu_G)$ equipado con la multiplicación

$$(f *_{\alpha,\sigma} g)(x) := \int_G f(y) \alpha_y(g(y^{-1}x)) \sigma_{y,y^{-1}x} dy.$$

 $L^1(G,A,\alpha,\sigma)$ es un álgebra de Banach que satisface nuestras hipótesis fijas.

Representaciones covariantes

Una representación covariante de (G,A,α,σ) consiste en un par (π,u) junto con un espacio de Banach E donde

- $\pi: A \to \mathcal{B}(E)$ es un homomorfismo no degenerado y acotado,
- $u: G \to \operatorname{Iso}(E)$ es fuertemente continua,
- $u_x u_y = \pi(\sigma_{x,y}) u_{xy},$
- $\bullet \ \pi(\alpha_x(a)) = u_x \pi(a) u_x^{-1}.$

Cada representación covariante (π, u) induce una representación $\pi \rtimes u \colon L^1(G, A, \alpha, \sigma) \to \mathcal{B}(E)$ via

$$(\pi \rtimes u)(f) := \int_G \pi(f(x)) u_x dx.$$

De hecho, el mapeo $(\pi,u)\mapsto \pi\rtimes u$ es una biyección entre representaciones covariantes de (G,A,α,σ) y representaciones no degeneradas de $L^1(G,A,\alpha,\sigma)$.

Productos cruzados torcidos

Fijemos $\mathcal R$ una clase de representaciones covariantes de (G,A,α,σ) . Únicamente pedimos que $\|\pi\| \leq C_{\mathcal R}$ para todo $(\pi,u) \in \mathcal R$. Definimos una seminorma en $L^1(G,A,\alpha,\sigma)$ como

$$||f||_{\mathcal{R}} := \sup\{||(\pi \times u)(f)|| \colon (\pi, u) \in \mathcal{R}\}.$$

Definición

El producto cruzado torcido de (G,A,α,σ) con respecto a $\mathcal R$ se define como la completación de

$$L^1(G, A, \alpha, \sigma) / \ker(\|-\|_{\mathcal{R}}),$$

y lo denotaremos como $F_{\mathcal{R}}(G, A, \alpha, \sigma)$.

- Si $C_R \le 1$, entonces $F_R(G, A, \alpha, \sigma)$ es un álgebra de Banach que satisface nuestras hipótesis fijas.
- En dicho caso, $F_{\mathcal{R}}(G, A, \alpha, \sigma)$ es el álgebra de Banach universal para representaciones covariantes que son \mathcal{R} -continuas.

Equivalencia de acciones torcidas

Decimos que dos acciones torcidas (α, σ) y (β, ω) de G en A son equivalentes si existe $\theta \colon G \to \operatorname{Inv}_1(M(A))$ estrictamente continua tal que

En dicho caso ponemos $(\alpha,\sigma) \stackrel{\theta}{\sim} (\beta,\omega)$ y para cada $(\pi,u) \in \mathcal{R}$ definimos $v=v_{\pi,u}\colon G \to \mathrm{Iso}(E)$ como

$$v_{x} \coloneqq \widehat{\pi}(\theta_{x})u_{x}.$$

Ponemos $\mathcal{R}_{\theta} \coloneqq \{(\pi, v_{\pi,u}) \colon (\pi, u) \in \mathcal{R}\}.$

Teorema (D., Farsi, Packer: 2025)

 $Si(\alpha, \sigma) \stackrel{\theta}{\sim} (\beta, \omega)$, entonces \mathcal{R}_{θ} es una clase de representaciones covariantes de (G, A, β, ω) y

$$F_{\mathcal{R}}(G, A, \alpha, \sigma) \stackrel{1}{\cong} F_{\mathcal{R}_{\theta}}(G, A, \beta, \omega).$$

- 1 Motivación: Acciones Torcidas
- 2 Hipótesis Fijas
- 3 Productos Cruzados
- f 4 Representaciones en espacios L^p

Álgebras de operadores en espacios L^p

A partir de ahora, asumimos que A actúa no degeneradamente en un espacio L^p . Es decir, fijamos una $p \in [1,\infty)$ y asumimos que hay un espacio de medida (Ω,μ) tal que

$$A\subseteq \mathcal{B}(L^p(\Omega,\mu)).$$

Denotamos por \mathcal{R}^p a la clase de **todas** las representaciones de un sistema dinámico de Banach torcido (G,A,α,σ) actuando únicamente en espacios L^p . Definimos el L^p -producto cruzado torcido como

$$F^p(G, A, \alpha, \sigma) := F_{\mathcal{R}^p}(G, A, \alpha, \sigma)$$

Corolario

 $Si(\alpha,\sigma) \stackrel{\theta}{\sim} (\beta,\omega)$, entonces $F^p(G,A,\alpha,\sigma) \stackrel{1}{\cong} F^p(G,A,\beta,\omega)$.

Demostración. $\mathcal{R}^p(G, A, \alpha, \sigma)_{\theta} = \mathcal{R}^p(G, A, \beta, \omega)$.

El truco de Packer-Raeburn para eliminar la torción

Es posible "destorcer" una acción de manera estable. Sea $p \in (1,\infty)$ y consideremos el álgebra

$$\operatorname{St}_p(A) := \mathcal{K}(L^p(G)) \otimes_p A \subseteq \mathcal{B}(L^p(G \times \Omega, \nu_G \times \mu)).$$

Sea $p'\in (1,\infty)$ el conjugado de p (i.e, $\frac{1}{p}+\frac{1}{p'}=1$). Entonces el mapeo $L^p(G\to L^{p'}(G\to A))\to \operatorname{St}_p(A)$ dado por $\psi\mapsto K_\psi$, donde

$$(K_{\psi}\xi)(x,w) \coloneqq \int_G \psi(x,y)\xi(y,w)dy,$$

tiene rango denso y satisface $||K_{\psi}|| \leq ||\psi||$.

Teorema (D., Farsi, Packer: 2025)

Existe una acción genuina β de G en $\operatorname{St}_p(A)$ tal que

$$\mathcal{K}(L^p(G)) \otimes_p F^p(G, A, \alpha, \sigma) \stackrel{1}{\cong} F^p(G, \operatorname{St}_p(A), \beta).$$

¡Gracias por su atención! ¿Preguntas?