L p -Spectral Triples: Group and UHF Algebras

Alonso Delfín (Joint work with Carla Farsi and Judith Packer)

CU Boulder

January 10, 2025 JMM 2025: AMS Special Session on Advances in Operator Algebras

¹ [Classic Spectral Triples and Quantum Metrics](#page-2-0)

2 L^P[-Spectral Triples](#page-0-0)

³ *L p* [-Group Algebras](#page-0-0)

1 [Classic Spectral Triples and Quantum Metrics](#page-2-0)

2 L^P[-Spectral Triples](#page-0-0)

³ *L p* [-Group Algebras](#page-0-0)

L p [-Group Algebras](#page-0-0) *L p* [UHF-Algebras](#page-0-0)

Classic Spectral Triple

Definition

A spectral triple (A, H, D) consists of a unital C^* -algebra A faithfully represented on a Hilbert space H via $\varphi: A \to B(H)$, and an unbounded selfadjoint operator $D: dom(D) \subseteq \mathcal{H} \rightarrow \mathcal{H}$ such that

$$
\bullet (I+D^2)^{-1}\in \mathcal{K}(\mathcal{H}),
$$

 \bigcirc {*a* ∈ *A*: $\|[D, φ(a)]\|_{\mathcal{B}(\mathcal{H})} < ∞$ } is a norm dense *-subalgebra of *A*.

Since D is required to be selfadjoint, condition \bullet is equivalent to asking for *D* to have compact resolvent, that is

$$
\mathbf{\Theta}^{\prime} \ \ (D - \lambda I)^{-1} \in \mathcal{K}(\mathcal{H}) \text{ for all } \lambda \in \mathbb{C} \setminus \sigma(D).
$$

Let *B* be a complex normed space. In 1998 M. Rieffel gave a general setting to get compact metrics on certain subspaces of $B' = \mathcal{B}(B,\mathbb{C})$. The ingredients are:

- \bullet A subspace $\mathcal L$ of B , not necessarily closed.
- A seminorm $L: \mathcal{L} \to \mathbb{R}_{>0}$ with $\ker(L) \neq \{0\}.$
- A continuous linear functional, $\varphi: \ker(L) \to \mathbb{C}$ with $\|\varphi\| = 1$.
- \bullet We ask that $\mathcal L$ separate the points of

$$
S:=\{\omega\in B': \omega=\varphi \text{ on } \ker(L) \text{, and } \|\omega\|=1\}.
$$

We define an extended pseudo metric $d_S: S \times S \to \mathbb{R}_{\geq 0} \cup \{\infty\}$, by

$$
d_S(\omega, \psi) := \sup\{|\omega(b) - \psi(b)| : b \in \mathcal{L}, L(b) \leq 1\}.
$$

Theorem (Rieffel 98)

With the ingredients described above, we put $\mathcal{L}_1 := \{b \in \mathcal{L} : L(b) \leq 1\}.$ If the image of \mathcal{L}_1 in $\mathcal{L}/\ker(L)$ is totally bounded for $\|-\|_{B/\ker(L)}$, then the d*S*-topology on *S* agrees with the weak-∗ topology.

Length Functions

A length function $\mathbb{L}: G \to \mathbb{R}_{\geq 0}$ on a group *G* is a function satisfying

$$
\mathbb{L}(g) = 0 \Leftrightarrow g = 1_G, \quad \mathbb{L}(g^{-1}) = \mathbb{L}(g), \quad L(gh) \le \mathbb{L}(g) + \mathbb{L}(h).
$$

We say $\mathbb L$ is *proper* if in addition $B_{\mathbb L}(R)\coloneqq \mathbb L^{-1}([0,R])\subseteq G$ is a finite set for all $R \in \mathbb{R}_{\geq 0}$.

Definition

Let $\mathbb L$ be a proper length function on a group *G*. We say that $\mathbb L$ has

- strong polynomial growth if there exist constants $C_{\mathbb{L}}$, $d < \infty$ such $\mathsf{that}\,\, \overline{\mathsf{C}}^{-1}_{\mathbb{L}}\mathsf{R}^d\leq \mathsf{card}(B_{\mathbb{L}}(R))\leq \overline{\mathsf{C}}_{\mathbb{L}}\mathsf{R}^d$ for all $R\geq 1.$
- bounded doubling if there exists a constant $C_{\mathbb{L}} < \infty$ such that card($B_{\mathbb{L}}(2R)$) < $C_{\mathbb{L}}$ card($B_{\mathbb{L}}(R)$) for all $R > 1$.
- *polynomial growth* if there exist constants $C_{\mathbb{L}}$, $d < \infty$ such that $\operatorname{card}(B_\mathbb{L}(R))\leq C_\mathbb{L}R^d$ for all $R\geq 1.$

In general SPG \Rightarrow BD \Rightarrow PG; and these are equivalent for finitely generated groups.

L p [-Group Algebras](#page-0-0) *L p* [UHF-Algebras](#page-0-0)

Quantum Compact Metrics from Spectral Triples

Let (A, H, D) be a spectral triple. A. Connes defined an extended pseudometric mk_D on $S(A)$, the state space of A, by

 $mk_D(\omega, \psi) := \sup\{|\omega(a) - \psi(a)| : a \in A, ||[D, \varphi(a)]|| \leq 1\}.$

Definition

We say (A, H, D) is a *metric spectral triple* when mk_D is a metric whose topology on *S*(*A*) agrees with the weak-∗ topology. This makes *S*(*A*) a quantum compact metric space.

Example (Christ-Rieffel 2017)

Let *G* be a countable discrete group, let $\mathbb L$ be a proper length function on G , and let $D_{\mathbb{L}} \colon \mathcal{C}_{\mathcal{C}}(G) \to \ell^2(G)$ be given by

$$
(D_{\mathbb{L}}\xi)(g) := \mathbb{L}(g)\xi(g).
$$

Then $(C^{*}_{\mathbf{r}}(G),\ell^{2}(G),D_{\mathbb{L}})$ is a metric spectral triple when \mathbb{L} has bounded doubling.

¹ [Classic Spectral Triples and Quantum Metrics](#page-2-0)

2 L^P[-Spectral Triples](#page-0-0)

³ *L p* [-Group Algebras](#page-0-0)

Definition

Let $p \in [1, \infty)$ and let A be a Banach algebra. We say A is an L^p -operator algebra if there is a measure space (X,μ) and an isometric homomorphism $\varphi\colon A\to \mathcal{B}(L^p(\mu)).$

Minor modifications to the classic definition give the following:

Definition

Let $p \in [1, \infty)$ and let (X, μ) be a measure space. An *L^p*-spectral triple $(A, I^p(\mu))$ D) consists of a unital *LP* constant also that A , a unital $(A, L^p(\mu), D)$ consists of a unital L^p -operator algebra A, a unital isometric homomorphism $\varphi\colon A\to \mathcal{B}(L^p(\mu))$, and an unbounded operator $D \colon \text{\rm dom}(D) \subseteq L^p(\mu) \to L^p(\mu)$, satisfying

- \bullet $(I+D^2)^{-1}$, $(D-\lambda I)^{-1}\in \mathcal{K}(L^p(\mu))$ for all $\lambda\in\mathbb{C}\setminus\sigma(D),$
- \bigcirc { $a \in A$: $\Vert [D, \varphi(a)] \Vert < \infty$ } is a norm dense subalgebra of A.

 $S(A) := \{ \omega \in A' \colon ||\omega|| = \omega(1_A) = 1 \}$ is the state space of a unital Banach algebra A. Thus, we will say $(A, L^p(\mu), D)$ is a *metric* L^p -spectral triple when the \mathbf{mk}_D -metric topology on $S(A)$ agrees with the weak-∗ topology.

¹ [Classic Spectral Triples and Quantum Metrics](#page-2-0)

2 L^P[-Spectral Triples](#page-0-0)

Let $p \in [1, \infty)$ and let *G* be a discrete group. Then $\ell^1(G)$ acts on $\ell^p(G)$ as left convolution operators. That is, $\lambda_p \colon \ell^1(G) \to \mathcal{B}(\ell^p(G))$ is given by

$$
(\lambda_p(a)b)(g) = \sum_{h \in G} a(h)b(h^{-1}g)
$$

Definition

For $p \in [1, \infty)$, the *reduced* L^p -operator algebra of G is

L p [-Group Algebras](#page-0-0) [UHF-Algebras](#page-0-0)

$$
F_{\mathbf{r}}^p(G) = \overline{\lambda_p(\ell^1(G))} \subseteq \mathcal{B}(\ell^p(G))
$$

Fact: $F_r^2(G) = C_r^*(G)$.

Theorem (D., Farsi, Packer (2025))

Let $p \in [1,\infty)$, let G be a countable discrete group, and let $\mathbb L$ be a proper length function on G. Then, $(F^p_\mathrm{r}(G), \ell^p(G), D_{\mathbb{L}})$ is an *L p* -spectral triple

L p [-Group Algebras](#page-0-0) *L* **HF-Algebras**

Quantum Compact Metrics on $S(F_{\mathbf r}^p(\mathbb Z))$

For $\beta \in (0,1]$ define $\mathbb{L}_{\beta} \colon \mathbb{Z} \to \mathbb{R}_{\geq 0}$ by $\mathbb{L}_{\beta}(n) \coloneqq |n|^{\beta}$.

Theorem (Rieffel (2002))

Let ω be a translation-bounded function on $\mathbb Z$ such that $\omega(0) = 0$. If $\mathbb{L}_{\beta}/\omega$ is a bounded function (ignoring $n = 0$) for some β with $1/2 < \beta \leq 1$, then mk_{D_ω} is a quantum compact metric on the state space of $C_r^*(\mathbb{Z}) = C(\mathbb{T})$.

Theorem (D., Farsi, Packer (2025))

Let $\frac{1}{p} + \frac{1}{q} = 1$, and let ω be a translation-bounded function on $\mathbb Z$ such that $\omega(0) = 0$. If $\mathbb{L}_{\beta}/\omega$ is a bounded function (ignoring $n = 0$) for some β with $1/q < \beta \leq 1$, then mk_{D_ω} is a quantum compact metric on the state space of $F_r^p(\mathbb{Z})$.

¹ [Classic Spectral Triples and Quantum Metrics](#page-2-0)

2 L^P[-Spectral Triples](#page-0-0)

³ *L p* [-Group Algebras](#page-0-0)

Christensen-Ivan AF Metric Spectral Triples

L p [-Group Algebras](#page-0-0) *L p* [UHF-Algebras](#page-0-0)

Let $A = \lim_{n \to \infty} A_n \subseteq \mathcal{B}(\mathcal{H})$ an infinite dimensional unital C^* AF-algebra with $A_n\subseteq\mathcal{B}(\mathcal{H}_n)$ and $\mathcal{H}_n\subseteq\mathcal{H}$. Let $P_n\colon\mathcal{H}\to\mathcal{H}_n$ and $\alpha=(\alpha_n)_{n=0}^\infty$ a sequence in $\mathbb{R}_{\geq 0}$ with $\alpha_0 = 0$. Put

$$
D_{\alpha}=\sum_{n=1}^{\infty}\alpha_n(P_n-P_{n-1}).
$$

Theorem (Christensen, Ivan (2006))

[Classic Setting](#page-2-0) *L p* [-Spectral Triples](#page-0-0)

There exists $\alpha = (\alpha_n)_{n=0}^{\infty}$, a sequence in $\mathbb{R}_{\geq 0}$, with $\alpha_0 = 0$ such that (A, H, D_{α}) is a metric spectral triple.

The proof relies on the GNS construction and the existence of a separating and cyclic vector on H .

L ^p UHF-algebras

General (spatial) *L ^p* AF-Algebras were recently defined and classified by N. C. Phillips and M. G. Viola, but we need more structure on the acting L^p -spaces. A concrete and more manageable case is the UHF one:

Definition

Let $d: \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{\geq 2}$ be a sequence. An L^p UHF-algebra of infinite tensor product type is the direct limit of $((A_n)_{n=0}^{\infty},(\varphi_{m,n})_{0\leq n\leq m})$ where each A_n is an L^p -operator algebra that acts on a probability space and such that each A_n algebraically isomorphic to M_n where

$$
M_n := \mathbb{M}_{d(0)\cdots d(n)}(\mathbb{C}) \cong \bigotimes_{j=0}^n \mathbb{M}_{d(j)}(\mathbb{C}).
$$

Fix $p \in [1, \infty)$ and $d : \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{\geq 2}$. Let $(X_n, \mu_n)_{n=0}^{\infty}$ be probability spaces and let $(\rho_j)_{j=0}^{\infty}$ be unital algebra homomorphism

$$
\rho_j\colon \mathbb{M}_{d(j)}(\mathbb{C})\to \mathcal{B}(L^p(X_j,\mu_j)).
$$

In addition, we assume that for each $j \in \mathbb{Z}_{\geq 1}$

- \bullet X_i consists of finitely many points and is a compact metric space with metric $\mathrm{dist}_j \colon X_j \times X_j \to \mathbb{R}_{\geq 0}$ bounded by 1, and in particular for $j = 0$
- **2** $L^p(X_0, \mu_0) = \ell_1^p = \mathbb{C}$ and $\rho_0(z)\zeta = z\zeta$ for any $z, \zeta \in \mathbb{C}$. Now, for each $m \in \mathbb{Z}_{\geq 0}$, we define

$$
(X_{\leq m},\mu_{\leq m}):=\prod_{j=0}^m (X_j,\mu_j),\quad (X_{\geq m},\mu_{\geq m}):=\prod_{j=m}^\infty (X_j,\mu_j).
$$

On M_n we define $||a_0 \otimes \ldots \otimes a_n|| := ||\rho_0(a_0) \otimes \ldots \otimes \rho_n(a_n)||$, which makes M_n an L^p -operator algebra acting on $L^p(\mu_{\le n})$. Filling in tensor identities, we get isometric embeddings $\rho_{n,\infty} \colon M_n \to \mathcal{B}(L^p(\mu_{\geq 0}))$.

$$
A(\rho, d) := \overline{\bigcup_{j=0}^{\infty} \rho_{n,\infty}(M_n)} \subseteq \mathcal{B}(L^p(\mu_{\geq 0})).
$$

L p [-Group Algebras](#page-0-0) *L p* [UHF-Algebras](#page-0-0)

Metric *L ^p* UHF triple

With $(X_n, \mu_n)_{n=0}^{\infty}$ as before, we define $\iota_n: L^p(\mu_{\leq n}) \to L^p(\mu_{\geq 0})$ by $(\iota_n \xi)(x_0, \ldots, x_n, \mathbf{x}) := \xi(x_0, \ldots, x_n)$, $\pi_n: L^p(\mu_{\geq 0}) \to L^p(\mu_{\leq n})$ by Z

$$
(\pi_n\eta)(x_0,\ldots,x_n):=\int_{X_{\geq n+1}}\eta(x_0,\ldots,x_n,\mathbf{x})d\mu_{\geq n+1}(\mathbf{x}),
$$

•
$$
P_n
$$
: $L^p(\mu_{\geq 0}) \to L^p(\mu_{\geq 0})$ by $P_n := \iota_n \circ \pi_n$.

Facts: $P_nP_m = P_mP_n = P_n$ for $m \in \mathbb{Z}_{\geq n}$, $||P_n|| = 1$, $P_n \stackrel{\text{SOT}}{\longrightarrow} \text{Id}_{\geq 0}$, and for any $a \in \rho_{n,\infty}(M_n)$, if $m \in \mathbb{Z}_{\geq n}$, $aP_m = P_m a$.

Theorem (D., Farsi, Packer (2025))

There exists $\alpha = (\alpha_n)_{n=0}^{\infty}$, a sequence in $\mathbb{R}_{\geq 0}$, with $\alpha_0 = 0$ such that $(A(d, \rho), L^p(\mu_{\geq 0}), D_\alpha)$ is a metric L^p -spectral triple, where

$$
D_{\alpha}=\sum_{n=1}^{\infty}\alpha_n(P_n-P_{n-1}).
$$

Thank you! Questions?