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Representations

For a Banach space E, we will denote the Banach algebra of bounded
linear maps E→ E by L(E).

A representation of a Banach algebra A on a Banach space E is a
continuous homomorphism ϕ : A→ L(E). We say ϕ is nondegenerate
if

ϕ(A)E := span{ϕ(a)ξ : a ∈ A,ξ ∈ E}

is dense in E.

Let A be a Banach algebra, and let p ∈ [1, ∞]. We say that A is an Lp-
operator algebra if there is a measure space (Ω,M,µ) and an isometric
representation

A ↪→ L(Lp(µ))
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Examples

Example

For any (Ω,M,µ) and p ∈ [1, ∞], we trivially have that L
(

Lp(µ)
)

is an
Lp-operator algebra.

Example

For any (Ω,M,µ) and p ∈ [1, ∞], the algebra K
(

Lp(µ)
)

of compact
operators on Lp(µ) is an Lp-operator algebra.

Example

Any C∗-algebra is an L2 operator algebra. However, a general L2

operator algebra is not necessarily a self-adjoint algebra.
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More Examples

Example

Equip Mn, the set of n× n complex matrices, with the operator norm
acting on (Cn, ‖ − ‖p) for p ∈ [1, ∞]. Then Mn is equal to
L(`p({1, . . . , n})). To emphasize the dependence on the p-norm, this
space is denoted by Mp

n .

Example

For j, k ∈ {1, . . . , n}, let e j,k ∈ Mp
n be the matrix whose only non-zero

entry is the entry ( j, k) which is equal to 1. Then, the set of upper
triangular matrices

Tp
n = span{e j,k : 1 ≤ j ≤ k ≤ n}

is a subalgebra of Mp
n , which is also an Lp-operator algebra.
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Degenerate Lp-Operator Algebras

Let A be the algebra generated by e1,2 in Tp
2 . That is,

A =

{(
0 λ
0 0

)
: λ ∈ C

}
⊂ Tp

2

If ϕ : A→ L(E) is a representation on any non-zero Banach space E.
Then ϕ(A)E ⊂ ker(ϕ(e1,2)).

(1) ϕ(e1,2) 6= 0. There is ξ ∈ E for which ϕ(e1,2)ξ 6= 0, whence
ker(ϕ(e1,2)) is a proper closed subset of E. Therefore, ϕ(A)E
cannot be dense in E.

(2) ϕ(e1,2) = 0. Here, ϕ(A)E = {0}, so again it cannot be dense in E.

Conclusion: A does not admit non-degenerate representations.

Alonso Delf́ın Ares de Parga (joint work with A. Blinov and E. Weld) An introduction to Lp -Operator Algebras and its Multiplier Algebras.



8/26

Lp -Operator Algebras
Multiplier Algebras

Augmentation Ideal

A final example

Example

Let p ∈ [1, ∞] and let Ω be a locally compact topological space. Then
C0(Ω), with the usual supremum norm, is an Lp-operator algebra.

To see this, let ν be counting measure on Ω and define
ϕ : C0(Ω)→ L

(
`p(ν)

)
by

(ϕ( f )ξ)(ω) := f (ω)ξ(ω)

One checks that ϕ is an isometric bijection from C0(Ω) to a norm closed
subalgebra of L(`p(ν)).
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Differences between C*-algebras and Lp-operator algebras

1 Lp-operator algebras lack involution,

2 Some Lp-operator algebras can’t be nondegenerately represented,

3 Some Lp-operator algebras don’t have contractive approximate units,

4 Lp-operator norms are generally hard to compute,

5 Lp-operator norms are not unique.
6 An abstract characterization of Lp-operator algebras, among all

Banach algebras, is not known,

The class of of Lp-operator algebras is not closed under quotients by
two-sided closed ideals,
In general, it’s hard to show that a given Banach algebra is not an
Lp-operator algebra.
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Tensor Products

Let p ∈ [1, ∞), let (Ω0,M,µ) and (Ω1,N,ν) be measure spaces.
There is a tensor product, ⊗p, such that

Lp(µ)⊗p Lp(ν) ∼= Lp(µ × ν) via (ξ ⊗ η)(ω0,ω1) = ξ(ω0)η(ω1)

Moreover,

If a ∈ L(Lp(µ1), Lp(µ2)) and b ∈ L(Lp(ν1), Lp(ν2)), then there is
a⊗ b ∈ L(Lp(µ1 × ν1), Lp(µ2 × ν2)), which has the expected
properties: bilinearity, ‖a⊗ b‖ = ‖a‖‖b‖ and
(a1 ⊗ b1)(a2 ⊗ b2) = a1a2 ⊗ b1b2.

If A ⊆ L(Lp(µ)) and B ⊆ L(Lp(ν)) are norm closed subalgebras,
we define A⊗p B as the closed linear span, in L

(
Lp(µ × ν)

)
, of

a⊗ b for a ∈ A and b ∈ B.
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G-Lp-Operator Algebras

Let A be an Lp-operator algebra, let G be a locally compact group with
Haar measure ν, and let α : G→ Aut(A) be an isometric action (i.e. for
each g ∈ G the map α(g) =: αg : A→ A is isometric and for each
a ∈ A, g 7→ αg(a) is a continuous map G→ A). The triple (G, A,α) is
called an isometric G-Lp-operator algebra.

We denote by L1(G, A,α) to the space L1(G→ A) equipped with
twisted convolution:

(x ∗ y)(g) =
∫

G
x(h)αh(y(h−1g))dν(h).

Thus, L1(G, A,α) is a normed algebra.

Alonso Delf́ın Ares de Parga (joint work with A. Blinov and E. Weld) An introduction to Lp -Operator Algebras and its Multiplier Algebras.



12/26

Lp -Operator Algebras
Multiplier Algebras

Augmentation Ideal

Crossed Products

Let (G, A,α) be an isometric G-Lp-operator algebra and (Ω,M,µ) a
measure space. A covariant representation of (G, A,α) on Lp(µ)
consists of a pair (ϕ, u) where

ϕ is a representation of A on Lp(µ),

u : G→ Inv(Lp(µ)) is a group homomorphism with
g 7→ u(g)ξ := ugξ a continuous map for all ξ ∈ Lp(µ),

ϕ(αg(a)) = ugϕ(a)u−1
g for all g ∈ G, a ∈ A.

A covariant representations (ϕ, u) induces a representation of
L1(G, A,α) on Lp(µ) via

(ϕo u)x :=
∫

G
ϕ(x(g))ugdν(g).

A contractive representation ϕ of A on Lp(µ) induces a covariant
representation of (A, G,α) on Lp(ν ×µ) denoted (ϕ̃, λ).
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Crossed Products

Given an isometric G-Lp-operator algebra we define a norm on
L1(G, A,α) by

‖x‖o = sup
(ϕ,u) is a σ-finite, nondegenerate,

contractive, covariant representation of (G, A,α)

‖(ϕo u)x‖

The full crossed product is Fp(G, A,α) := L1(G, A,α)
‖−‖o

. Similarly, if

‖x‖r = sup
ϕ is a σ-finite, nondegenerate,
contractive representation of A

‖(ϕ̃o λ))x‖

Then, Fr(G, A,α) := L1(G, A,α)
‖−‖r

is the reduced crossed product.
These two coincide when G is amenable.
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Lp-group algebras

Let G be a discrete group and p ∈ [1, ∞). Then `1(G) acts on `p(G) as
a left convolution operator. That is, λ : `1(G)→ L(`p(G)) is given by

(λ(a)b)(g) = ∑
h∈G

a(h)b(h−1g)

Definition

For p ∈ [1, ∞), the reduced Lp-operator algebra of G is

Fp
r (G) = λ(`1(G)) ⊆ L(`p(G))

When p = 1, we have F1
r (G) = `1(G). Thus, `1(G) is a unital

L1-operator algebra (unit is δ1G ) acting on itself via left multiplication.
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Double Centralizers of a Banach Algebra A
We say that L ∈ L(A) is a left centralizer for A if for any a, b ∈ A,

L(ab) = L(a)b.

The space of left centralizers is denoted by LC(A). Similarly, R ∈ L(A)
is a right centralizer if for any a, b ∈ A,

R(ab) = aR(b).

We denote by RC(A) to the space of right centralizers.

Definition

The multiplier algebra of A is

M(A) = {(L, R) ∈ LC(A)× RC(A) : aL(b) = R(a)b}

equipped with the norm ‖(L, R)‖ = max{‖L‖, ‖R‖}.

M(A) is a unital Banach subalgebra of L(A)×L(A)op where the unit
is (idA, idA).
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Two Sided Multipliers

It’s well known that if A is a C*-algebra which is nondegenerately
represented on a Hilbert space H via ϕ : A→ L(H), then

M(A) ∼= {b ∈ L(H) : bϕ(A) ⊆ϕ(A),ϕ(A)b ⊆ϕ(A)}.

In fact, the RHS is an alternative definition for M(A). This alternative
definition is therefore independent of the Hilbert space and the
representation ϕ chosen.

Theorem (D, 2023)

Let A be a Banach algebra with a cai and that’s nondegenerately
represented on a Banach space E via ϕ : A→ L(E). Then M(A) is
isometrically isomorphic to

{b ∈ L(E) : bϕ(A) ⊆ϕ(A),ϕ(A)b ⊆ϕ(A)}

Question: What happens if we drop the assumptions of nondegeneracy
and the existence of a cai?
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Algebras with non-unital identities

There is a natural inclusion ι : A→ M(A) be given by ι(a) = (La, Ra),
where La(b) = ab and Ra(b) = ba. If A has a cai, then ι is isometric and

‖La‖ = ‖Ra‖ = ‖a‖.

Proposition

Let 1A ∈ A be an identity for A, potentially not a unit (i.e. ‖1A‖ 6= 1).
Then M(A) is isometrically isomorphic to (A, ‖ − ‖′) where

‖a‖′ = ‖ι(a)‖ = max{‖La‖, ‖Ra‖}

In particular ‖a‖′ = ‖a‖ when 1A is a unit.

Corollary

If A is commutative with non unital identity 1A, then M(A) is
isometrically isomorphic to (A, ‖ − ‖′) where

‖a‖′ = ‖La‖ = sup
‖b‖=1

‖ab‖ 6= ‖a‖.
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Representable Lp-Multiplier algebras

As a corollary of the work presented for general Banach Algebras we get

Corollary

If A is a nondegenerately representable Lp-operator algebra with a cai,
then M(A) is a nondegenerately representable Lp-operator algebra.

Now consider the algebra of 2× 2 strictly upper triangular matrices:

STp
2 =

{(
0 z
0 0

)
: z ∈ C

}
⊂ Mp

2 = L(`p
2)

STp
2 does not have a cai and that it can’t be nondegenerately represented

on any Banach space. However, since STp
2
∼= C it’s clear that

LC(STp
2 )
∼= C, RC(STp

2 )
∼= C, and therefore

M(STp
2 ) = LC(STp

2 )× RC(STp
2 )
∼= C2 ∼= C({1, 2}) ⊂ L(`p

2).

That is, M(STp
2 ) is a nondegenerately representable Lp-operator algebra.

Alonso Delf́ın Ares de Parga (joint work with A. Blinov and E. Weld) An introduction to Lp -Operator Algebras and its Multiplier Algebras.



20/26

Lp -Operator Algebras
Multiplier Algebras

Augmentation Ideal

Outline

1 Lp-Operator Algebras

2 Multiplier Algebras

3 Augmentation Ideal

Alonso Delf́ın Ares de Parga (joint work with A. Blinov and E. Weld) An introduction to Lp -Operator Algebras and its Multiplier Algebras.



21/26

Lp -Operator Algebras
Multiplier Algebras

Augmentation Ideal

The augmentation ideal `1
0(G)

Consider the contractive algebra homomorphism `1(G)→ C given by

a 7→ ∑
g∈G

a(g)

We define the augmentation ideal of `1(G) as the kernel of this map:

Definition

For a discrete group G, the augmentation ideal of `1(G) is

`1
0(G) =

{
a ∈ `1(G) : ∑

g∈G
a(g) = 0

}

`1
0(G) is an L1-operator algebra degenerately represented on `1(G).

Open Question

Is `1
0(G) nondegenerately representable on some L1(µ)?

Partial Answer : It’s impossible to nondegenertely represent `1
0(G) on

any Banach space when G is finite.
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Properties of `1
0(G)

For each g ∈ G we define ∆g ∈ `1
0(G) as

∆g := δg − δ1G .

Proposition

For any discrete group G, the space span{∆g : g ∈ G} is dense in

`1
0(G). If in addition G is finite with n := card(G) ≥ 2, then

`1
0(G) = span{∆g : g ∈ G}
`1

0(G) has an identity element 10. In fact

10 = − 1
n ∑

g∈G
∆g and ‖10‖1 = 2− 2

n

Since 10 not a unit when n > 2, it follows that `1
0(G) does not have a

cai when n > 2.
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What is M(`1
0(G))?

For G discrete with card(G) > 2 we have a non unital identity in `1
0(G)

and therefore M(`1
0(G)) is (`1

0(G), ‖a‖′ := max{‖La‖, ‖Ra‖}) where

‖La‖ = sup
b∈`1

0(G),‖b‖1=1
‖ab‖1,

‖Ra‖ = sup
b∈`1

0(G),‖b‖1=1
‖ba‖1.

If G is abelian, then M(`1
0(G)) is (`1

0(G), ‖a‖′ = ‖La‖).

Theorem (Blinov-D-Weld (2024))

For G finite (n = card(G)) and abelian M(`1
0(G)) is isometrically

isomorphic to Cn−1 with a norm different from the max norm.

Open Question

Is M(`1
0(G)) an L1-operator algebra?

Partial Answer: It is not when G = Z/3Z.
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Known norms that make C2 an L1-operator algebra.

Which norms make C2 an L1-operator algebra?

As before, C2 with the max norm is also an L1-operator algebra
acting on `1

2 via multiplication operators.

Let F : `1(Z/2Z)→ C(Z/2Z) the Fourier transform. Then we
have algebra isomorphisms

C2 ∼= C(Z/2Z) ∼= F−1(C(Z/2Z)) = `1(Z/2Z)

which make C2 an L1-operator algebra with norm coming from the
identification with `1(Z/2Z).

Open Question

Are these the only two norms that make C2 an L1-operator algebra?

We do know that the identification of M(`1
0(Z/3Z)) with C2 carries

none of these norms.
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G = Z/3Z

Theorem (Bernau-Lacey (1977))

Let p ∈ [1, ∞) and let e ∈ L(Lp(µ)) be a bicontractive idempotent (i.e.
e2 = e, ‖e‖ ≤ 1, and ‖1− e‖ ≤ 1). Then ‖1− 2e‖ = 1.

For Z/3Z = {0, 1, 2}, we get `1
0(Z/3Z) = span{∆1, ∆2}, and

10 = −1
3 (∆1 + ∆2).

Theorem (Blinov-D-Weld (2024))

M(`1
0(Z/3Z)) cannot be isometrically represented on any Lp-space.

Proof. The element
e2π i/3

3
∆1 +

e−2π i/3

3
∆2

is a bicontractive idempotent with ‖L10−2e‖ = 2√
3
> 1. �

Unfortunately, this argument doesn’t seem to work for higher order
groups.
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Thank you!

Questions?
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