Multiplier Algebras of L^p -Operator Algebras

Alonso Delfín (Joint work with Andrey Blinov and Ellen Weld)

CU Boulder

January 11, 2025 JMM 2025: AMS Contributed Paper Session on Functional Analysis and Operator Theory

2 Multiplier Algebras

3 Representability of M(A) on L^q -spaces

2 Multiplier Algebras

3) Representability of M(A) on L^q -spaces

Representability of M(A)

L^p -operator Algebras.

For $p \in [1, \infty)$, a Banach algebra A is an L^p -operator algebra if there is a measure space (Ω, μ) and an isometric representation

 $\varphi \colon A \to \mathcal{L}(L^p(\mu)).$

Example

- C*-algebras are L^2 -operator algebras.
- $\mathcal{L}(L^p(\mu)), \mathcal{K}(L^p(\mu)).$
- $\mathcal{L}(\ell_d^p) = M_d^p(\mathbb{C}).$
- Fix any $p \in [1, \infty)$ and let Ω be a locally compact space equipped with counting measure ν . Then $C_0(\Omega)$ is an L^p -operator algebra via $\varphi \colon C_0(\Omega) \to \mathcal{L}(L^p(\nu))$ given by

$$(\varphi(a)\xi)(\omega) = a(\omega)\xi(\omega).$$

• Fix any $p \in [1, \infty)$. Then T_d^p , the set of strictly upper triangular $d \times d$ matrices acting on ℓ_d^p , is an L^p -operator algebra.

L^p-operator Algebras

Differences between C*-algebras and L^p -operator algebras

- L^p-operator algebras lack involution,
- Some L^p-operator algebras can't be nondegenerately represented,
- Some L^p-operator algebras don't have cai's,
- L^p-operator norms are generally hard to compute,
- L^p -operator norms are not unique,
- An abstract characterization of L^p-operator algebras, among all Banach algebras, is not known,
 - In general, it's hard to show whether a given Banach algebra is an L^p -operator algebra,
 - The class of of L^p-operator algebras is not closed under quotients by two-sided closed ideals (Gardella-Thiel, 2016; Blecher-Phillips, 2020).

Theorem (Bernau-Lacey (1977))

Let $p \in [1, \infty)$ and let $e \in \mathcal{L}(L^p(\mu))$ be a bicontractive idempotent (i.e. $e^2 = e$, $||e|| \le 1$, and $||1 - e|| \le 1$). Then ||1 - 2e|| = 1.

5/16

Representability of M(A)

L^p-operator Algebras

2 Multiplier Algebras

3) Representability of M(A) on L^q -spaces

Representability of M(A)

Double Centralizers

Let A be a Banach algebra. We say that $L \in \mathcal{L}(A)$ is a left centralizer for A if for any $a, b \in A$,

$$L(ab) = L(a)b.$$

The space of left centralizers is denoted by LC(A). Similarly, $R \in \mathcal{L}(A)$ is a right centralizer if for any $a, b \in A$,

$$R(ab) = aR(b).$$

We denote by RC(A) to the space of right centralizers.

Definition

The multiplier algebra of A is

$$M(A) = \{(L, R) \in L(A) \times RC(A) \colon aL(b) = R(a)b\}$$

equipped with the norm $||(L, R)|| = \max\{||L||, ||R||\}$.

M(A) is a unital Banach subalgebra of $\mathcal{L}(A) \times \mathcal{L}(A)^{\mathrm{op}}$ where the unit is $(\mathrm{id}_A, \mathrm{id}_A)$.

P-operator Algebras Multiplier Algebras Representability of M(A)

Two Sided Multipliers

It's well known that if A is a C*-algebra which is nondegenerately represented on a Hilbert space \mathcal{H} via $\varphi \colon A \to \mathcal{L}(\mathcal{H})$, then

 $M(A) \cong \{ b \in \mathcal{L}(\mathcal{H}) \colon b\varphi(A) \subseteq \varphi(A), \varphi(A)b \subseteq \varphi(A) \}.$

In fact, the RHS is an alternative definition for M(A).

Theorem (B. E. Johnson, 1964)

Let A be a Banach algebra with a cai and that's nondegenerately represented on a Banach space E via $\varphi: A \to \mathcal{L}(E)$. Then φ extends to a nondegenerate representation of M(A) on E.

In this case M(A) is again isometrically isomorphic to

$$\{b \in \mathcal{L}(E) \colon b\varphi(A) \subseteq \varphi(A), \varphi(A)b \subseteq \varphi(A)\}$$

Question: What happens if we drop the assumptions of nondegeneracy and the existence of a cai?

Representability of M(A)

(1) L^p -operator Algebras

3 Representability of M(A) on L^q -spaces

Representability of M(A)

Representable L^p -Multiplier algebras

Now consider the algebra of strictly upper triangular 2×2 matrices:

$$T_2^p = \left\{ \begin{pmatrix} 0 & z \\ 0 & 0 \end{pmatrix} : z \in \mathbb{C} \right\} \subset M_2^p(\mathbb{C}) = \mathcal{L}(\ell_2^p)$$

It's not hard to see that T_2^p can't have a cai and that it can't be nondegenerately represented on **any** Banach space. However, since $T_2^p \cong \mathbb{C}$, then $LC(T_2^p) \cong \mathbb{C}$ and $RC(T_2^p) \cong \mathbb{C}$. Therefore, for any $q \in [1, \infty)$

$$M(T_2^p) = LC(T_2^p) \times RC(T_2^p) \cong \mathbb{C}^2 \cong C(\{1,2\}) \subset \mathcal{L}(\ell_2^q).$$

That is, $M(T_2^p)$ is a nondegenerately representable L^q -operator algebra for any $p, q \in [1, \infty)$.

L^p-group algebras

Let G be a discrete group and $p \in [1, \infty)$. Then $\ell^1(G)$ acts on $\ell^p(G)$ as left convolution operators. That is, $\lambda_p \colon \ell^1(G) \to \mathcal{L}(\ell^p(G))$ is given by

$$(\lambda_p(a)b)(g) = \sum_{h \in G} a(h)b(h^{-1}g)$$

Definition

For $p \in [1, \infty)$, the reduced L^p -operator algebra of G is

$$F_{\mathbf{r}}^{p}(G) = \overline{\lambda_{p}(\ell^{1}(G))} \subseteq \mathcal{L}(\ell^{p}(G))$$

We define $\ell_0^1(G)$ as the kernel of the map $\ell^1(G) \ni a \mapsto \sum_{g \in G} a(g) \in \mathbb{C}$. That is,

$$\ell^1_0(G) = \left\{ a \in \ell^1(G) \colon \sum_{g \in G} a(g) = 0 \right\}$$

Our main object of study will be $F^p_{\mathbf{r},0}(G) = \overline{\lambda_p(\ell_0^1(G))} \subseteq \mathcal{L}(\ell^p(G)).$

Representability of M(A)

Properties of the augmentation ideal

Recall $\ell_0^1(G) = \left\{ a \in \ell^1(G) \colon \sum_{g \in G} a(g) = 0 \right\}$; $F_{r,0}^p(G) = \overline{\lambda_p(\ell_0^1(G))}$. For each $g \in G$ we define $\Delta_g \in \ell_0^1(G)$ as

$$\Delta_g := \delta_g - \delta_{1_G}.$$

Proposition

For any $p \in [1, \infty)$, the set span{ $\Delta_g : g \in G$ } is dense in $F_{r,0}^p(G)$. If in addition G is finite with $n := card(G) \ge 2$, then

$$\mathbf{1}_0 = -\frac{1}{n} \sum_{g \in G} \Delta_g$$

is an algebraic identity for $F_{r,0}^p(G)$.

When p = 1 we have $F_{\mathbf{r},0}^p(G) = \ell_0^1(G)$ and $\|\mathbf{1}_0\|_1 = 2 - \frac{2}{n}$.

Representability of M(A)

L^p-operator Algebras Multiplier Algebras

$F^p_{\mathbf{r},\mathbf{0}}(G)$ is a nonunital L^p -operator Algebra

$$\text{Recall } \ell^1_0(G) = \left\{ a \in \ell^1(G) \colon \sum_{g \in G} a(g) = 0 \right\}; \ F^p_{\mathbf{r},0}(G) = \overline{\lambda_p(\ell^1_0(G))}.$$

- If either p = 1 or G is amenable, then $F_{r,0}^p(G)$ acts degenerately on $\ell^p(G)$.
- For any finite group G with n := card(G) > 2, if $p \neq 2$, then $\mathbf{1}_0$ is not unital in $F^p_{\mathbf{r},0}(G)$. In fact,

$$\|\mathbf{1}_0\|_{F^p_{\mathbf{r}}(G)} > 1 \Longleftrightarrow p \neq 2$$

Let $a_0 := (n-1, -1, \ldots, -1) \in \ell_0^1(G)$ and for each $\varepsilon \in (-1, 1) \setminus \{0\}$ put $b_{\varepsilon} := a_0 + \varepsilon(1, \ldots, 1) \in \ell^p(G)$. Then $\mathbf{1}_0 b_{\varepsilon} = a_0$. We only need to find ε_p such that

$$||a_0||_p > ||b_{\varepsilon_p}||_p.$$

Here's a proof by picture using the function $\varepsilon \mapsto ||a_0||_p - ||b_\varepsilon||_p$.

• For any finite group G with card(G) > 2, if $p \neq 2$, then $F_{r,0}^{p}(G)$ has no cai and can't be nondegenerately represented on **any** Banach space.

Representability of M(A)

Nonrepresentable L^p-Multiplier algebras

For any finite group G with card(G) > 2, if $p \neq 2$, then $F_{r,0}^{p}(G)$ has no cai and can't be nondegenerately represented on **any** Banach space. If in addition G is abelian

$$M_0^p(G) := M(F_{\mathbf{r},0}^p(G)) \cong (\ell_0^1(G), ||| - |||_p)$$

where

$$|||a|||_p = \sup\{||ab||_{F^p_{\mathbf{r}}(G)} \colon b \in \ell^1_0(G), ||b||_{F^p_{\mathbf{r}}(G)} = 1\}.$$

Theorem (Blinov, D., Weld (2024))

Let $p_0 = 1.606$ and let $p'_0 = \frac{p_0}{p_0-1}$. Take any $p \in [1, p_0] \cup [p'_0, \infty)$. Then $M_0^p(\mathbb{Z}/3\mathbb{Z})$ is not an L^q -operator algebra for any $q \in [1, \infty)$.

Proof. Set $\gamma := \frac{1}{3} \exp(\frac{2\pi i}{3})$. The element $e := \gamma \Delta_{[1]} + \overline{\gamma} \Delta_{[2]} \in M_0^p(\mathbb{Z}/3\mathbb{Z})$ is a bicontractive idempotent and $\|\|\mathbf{1}_0 - 2e\|\|_p > 1$

$$(|||\mathbf{1}_0 - 2e|||_1 = \frac{2}{\sqrt{3}}).$$

Thank you! Questions?

Representability of M(A)

Known norms that make \mathbb{C}^n an L^1 -operator algebra.

Which norms make \mathbb{C}^n an L^1 -operator algebra?

- As before, \mathbb{C}^n with the max norm is also an L^1 -operator algebra acting on ℓ^1_n via multiplication operators.
- Let $\mathcal{F}\colon \ell^1(\mathbb{Z}/n\mathbb{Z})\to C(\mathbb{Z}/n\mathbb{Z})$ the Fourier transform. Then we have algebra isomorphisms

$$\mathbb{C}^n \cong C(\mathbb{Z}/n\mathbb{Z}) \cong \mathcal{F}^{-1}(C(\mathbb{Z}/n\mathbb{Z})) = \ell^1(\mathbb{Z}/n\mathbb{Z})$$

which make \mathbb{C}^n an L^1 -operator algebra with norm coming from the identification with $\ell^1(\mathbb{Z}/n\mathbb{Z})$.

Open Question

Are these the only two norms that make \mathbb{C}^n an L^1 -operator algebra?

For n=2, the identification of $M^1_0(\mathbb{Z}/3\mathbb{Z})$ with \mathbb{C}^2 carries none of these norms.