Multiplier Algebras of L^p-Operator Algebras

Alonso Delfín (Joint work with Andrey Blinov and Ellen Weld)

CU Boulder

January 11, 2025 JMM 2025: AMS Contributed Paper Session on Functional Analysis and Operator Theory

[Representability of](#page-0-0) *M*(*A*)

2 [Multiplier Algebras](#page-0-0)

³ [Representability of](#page-0-0) *M*(*A*) on *L q* -spaces

3 [Representability of](#page-0-0) $M(A)$ on L^q -spaces

L p [-operator Algebras](#page-2-0) [Multiplier Algebras](#page-0-0) [Representability of](#page-0-0) *M*(*A*)

L p -operator Algebras.

For $p \in [1, \infty)$, a Banach algebra *A* is an *L^p*-operator algebra if there is a measure space (Ω, μ) and an isometric representation

 $\varphi\colon A\to \mathcal{L}(L^p(\mu)).$

Example

- C*-algebras are *L* 2 -operator algebras.
- $\mathcal{L}(L^p(\mu)), \, \mathcal{K}(L^p(\mu)).$
- $\mathcal{L}(\ell^p_d)$ $\binom{p}{d}$ = M_d^p $_{d}^{p}(\mathbb{C}).$
- Fix any $p \in [1, \infty)$ and let Ω be a locally compact space equipped with counting measure ν . Then $C_0(\Omega)$ is an L^p -operator algebra via $\varphi\colon C_0(\Omega)\to \mathcal{L}(L^p(\nu))$ given by

$$
(\varphi(a)\xi)(\omega)=a(\omega)\xi(\omega).
$$

Fix any $p \in [1, \infty)$. Then T_d^p d' , the set of strictly upper triangular $d \times d$ matrices acting on ℓ^p_d $_{d}^{p}$, is an L^{p} -operator algebra.

L p [-operator Algebras](#page-2-0) [Multiplier Algebras](#page-0-0)

Differences between C^* -algebras and L^p -operator algebras

- \bullet L^p -operator algebras lack involution,
- \bullet Some L^p -operator algebras can't be nondegenerately represented,
- \bullet Some L^p -operator algebras don't have cai's,
- \bullet L^p -operator norms are generally hard to compute,
- **5** *L^p*-operator norms are not unique,
- \bullet An abstract characterization of L^p -operator algebras, among all Banach algebras, is not known,
	- In general, it's hard to show whether a given Banach algebra is an *L p* -operator algebra,
	- The class of of L^p -operator algebras is not closed under quotients by two-sided closed ideals (Gardella-Thiel, 2016; Blecher-Phillips, 2020).

Theorem (Bernau-Lacey (1977))

Let $p \in [1, \infty)$ and let $e \in \mathcal{L}(L^p(\mu))$ be a bicontractive idempotent (i.e. $e^2 = e$, $\|e\| \leq 1$, and $\|1 - e\| \leq 1$). Then $\|1 - 2e\| = 1$.

[Representability of](#page-0-0) *M*(*A*)

¹ *L p* [-operator Algebras](#page-2-0)

2 [Multiplier Algebras](#page-0-0)

3 [Representability of](#page-0-0) $M(A)$ on L^q -spaces

[Representability of](#page-0-0) *M*(*A*)

Double Centralizers

Let *A* be a Banach algebra. We say that $L \in \mathcal{L}(A)$ is a left centralizer for *A* if for any $a, b \in A$,

$$
L(ab) = L(a)b.
$$

The space of left centralizers is denoted by $LC(A)$. Similarly, $R \in \mathcal{L}(A)$ is a right centralizer if for any $a, b \in A$,

$$
R(ab) = aR(b).
$$

We denote by *RC*(*A*) to the space of right centralizers.

Definition

The multiplier algebra of *A* is

$$
M(A) = \{(L, R) \in L(A) \times RC(A) : aL(b) = R(a)b\}
$$

equipped with the norm $||(L, R)|| = max{||L||, ||R||}.$

 $M(A)$ is a unital Banach subalgebra of $\mathcal{L}(A)\times\mathcal{L}(A)^{\text{op}}$ where the unit is (id_A, id_A) .

[Representability of](#page-0-0) *M*(*A*)

Two Sided Multipliers

It's well known that if *A* is a C*-algebra which is nondegenerately represented on a Hilbert space H via $\varphi: A \to \mathcal{L}(\mathcal{H})$, then

 $M(A) \cong \{b \in \mathcal{L}(\mathcal{H}) : b\varphi(A) \subseteq \varphi(A), \varphi(A)b \subseteq \varphi(A)\}.$

In fact, the RHS is an alternative definition for *M*(*A*).

Theorem (B. E. Johnson, 1964)

Let *A* be a Banach algebra with a cai and that's nondegenerately represented on a Banach space *E* via $\varphi: A \to \mathcal{L}(E)$. Then φ extends to a nondegenerate representation of *M*(*A*) on *E*.

In this case $M(A)$ is again isometrically isomorphic to

$$
\{b\in\mathcal{L}(E)\colon b\varphi(A)\subseteq\varphi(A),\varphi(A)b\subseteq\varphi(A)\}
$$

Question: What happens if we drop the assumptions of nondegeneracy and the existence of a cai?

¹ *L p* [-operator Algebras](#page-2-0)

² [Multiplier Algebras](#page-0-0)

³ [Representability of](#page-0-0) *M*(*A*) on *L q* -spaces

[Representability of](#page-0-0) *M*(*A*)

Representable *L p* -Multiplier algebras

Now consider the algebra of strictly upper triangular 2×2 matrices:

$$
T_2^p = \left\{ \begin{pmatrix} 0 & z \\ 0 & 0 \end{pmatrix} : z \in \mathbb{C} \right\} \subset M_2^p(\mathbb{C}) = \mathcal{L}(\ell_2^p)
$$

It's not hard to see that T_2^p $\frac{p}{2}$ can't have a cai and that it can't be nondegenerately represented on any Banach space. However, since $T_2^p \cong \mathbb{C}$, then $LC(T_2^p)$ q ∈ [1, ∞) \mathcal{R}^p_2) $\cong \mathbb{C}$ and $RC(T_2^p)$ $(\mathbb{C}^p) \cong \mathbb{C}$. Therefore, for any

$$
M(T_2^p) = LC(T_2^p) \times RC(T_2^p) \cong \mathbb{C}^2 \cong C(\{1,2\}) \subset \mathcal{L}(\ell_2^q).
$$

That is, $M(T_2^p)$ \mathcal{L}^{p}_{2}) is a nondegenerately representable L^{q} -operator algebra for any $p, q \in [1, \infty)$.

[Representability of](#page-0-0) *M*(*A*)

L p -group algebras

Let *G* be a discrete group and $p \in [1, \infty)$. Then $\ell^1(G)$ acts on $\ell^p(G)$ as left convolution operators. That is, $\lambda_p \colon \ell^1(G) \to \mathcal{L}(\ell^p(G))$ is given by

$$
(\lambda_p(a)b)(g) = \sum_{h \in G} a(h)b(h^{-1}g)
$$

Definition

For $p \in [1, \infty)$, the *reduced* L^p -operator algebra of G is

$$
F_{\mathbf{r}}^p(G) = \overline{\lambda_p(\ell^1(G))} \subseteq \mathcal{L}(\ell^p(G))
$$

We define $\ell_0^1(G)$ as the kernel of the map $\ell^1(G) \ni a \mapsto \sum_{g \in G} a(g) \in \mathbb{C}.$ That is,

$$
\ell_0^1(G) = \left\{ a \in \ell^1(G) \colon \sum_{g \in G} a(g) = 0 \right\}
$$

Our main object of study will be $F^p_{r,0}(G) = \overline{\lambda_p(\ell^1_0(G))} \subseteq \mathcal{L}(\ell^p(G))$.

[Representability of](#page-0-0) *M*(*A*)

Properties of the augmentation ideal

 $\textsf{Recall} \,\,\ell^1_0(G) = \left\{ a \in \ell^1(G) \colon \, \sum_{g \in G} a(g) = 0 \right\}; \, F^p_{r,0}(G) = \overline{\lambda_p(\ell^1_0(G))}.$ For each $g\in G$ we define $\Delta_g\in\ell^1_0(G)$ as

$$
\Delta_g:=\delta_g-\delta_{1_G}.
$$

Proposition

For any $p \in [1, \infty)$, the set span $\{\Delta_g : g \in G\}$ is dense in $F^p_{r,0}(G)$. If in addition *G* is finite with $n := \text{card}(G) \geq 2$, then

$$
\mathbf{1}_0=-\frac{1}{n}\sum_{g\in G}\Delta_g
$$

is an algebraic identity for $F^p_{\mathbf{r},0}(G)$.

When $p = 1$ we have $F_{\text{r},0}^p(G) = \ell_0^1(G)$ and $||\mathbf{1}_0||_1 = 2 - \frac{2}{n}$.

$F^p_{\mathrm{r},0}(G)$ is a nonunital L^p -operator Algebra

Recall
$$
\ell_0^1(G) = \left\{ a \in \ell^1(G) \colon \sum_{g \in G} a(g) = 0 \right\}; F_{r,0}^p(G) = \overline{\lambda_p(\ell_0^1(G))}.
$$

- If either $p = 1$ or G is amenable, then $F^p_{\mathbf{r},0}(G)$ acts degenerately on $\ell^p(G)$.
- For any finite group *G* with $n := \text{card}(G) > 2$, if $p \neq 2$, then $\mathbf{1}_0$ is not unital in $F^{\overline{p}}_{\mathbf{r},0}(G)$. In fact,

$$
\|\mathbf{1}_0\|_{F_r^p(G)}>1\Longleftrightarrow p\neq 2
$$

Let $a_0:=(n-1,-1,\ldots,-1)\in \ell^1_0(G)$ and for each $\varepsilon\in (-1,1)\setminus\{0\}$ put $b_{\varepsilon} := a_0 + \varepsilon(1, \ldots, 1) \in \ell^p(G)$. Then $\mathbf{1}_0 b_{\varepsilon} = a_0$. We only need to find ε_p such that

$$
||a_0||_p>||b_{\varepsilon_p}||_p.
$$

Here's a *proof by picture [using the function](https://www.desmos.com/calculator/lsl4clswe5?)* $\varepsilon \mapsto ||a_0||_p - ||b_\varepsilon||_p$.

For any finite group *G* with $card(G) > 2$, if $p \neq 2$, then $F_{r,0}^p(G)$ has no cai and can't be nondegenerately represented on any Banach space.

[Representability of](#page-0-0) *M*(*A*)

Nonrepresentable *L p* -Multiplier algebras

For any finite group *G* with $card(G) > 2$, if $p \neq 2$, then $F_{r,0}^p(G)$ has no cai and can't be nondegenerately represented on any Banach space. If in addition *G* is abelian

$$
M_0^p(G) := M(F_{r,0}^p(G)) \cong (\ell_0^1(G), ||| - |||_p)
$$

where

$$
\| |a|||_p = \sup\{ \|ab\|_{F^p_\mathbf{r}(G)} \colon b \in \ell_0^1(G), \|b\|_{F^p_\mathbf{r}(G)} = 1 \}.
$$

Theorem (Blinov, D., Weld (2024))

Let
$$
p_0 = 1.606
$$
 and let $p'_0 = \frac{p_0}{p_0 - 1}$. Take any $p \in [1, p_0] \cup [p'_0, \infty)$.
Then $M_0^p(\mathbb{Z}/3\mathbb{Z})$ is not an L^q -operator algebra for any $q \in [1, \infty)$.

Proof. Set
$$
\gamma := \frac{1}{3} \exp(\frac{2\pi i}{3})
$$
. The element

$$
e := \gamma \Delta_{[1]} + \overline{\gamma} \Delta_{[2]} \in M_0^p(\mathbb{Z}/3\mathbb{Z})
$$
is a bicontractive idempotent and $|||1_0 - 2e|||_p > 1$

$$
(\|\mathbf{1}_0 - 2e\|\|_1 = \frac{2}{\sqrt{3}}).
$$

Thank you! Questions?

[Representability of](#page-0-0) *M*(*A*)

Known norms that make \mathbb{C}^n an L^1 -operator algebra.

Which norms make \mathbb{C}^n an L^1 -operator algebra?

- As before, \mathbb{C}^n with the max norm is also an L^1 -operator algebra acting on ℓ_n^1 via multiplication operators.
- Let $\mathcal{F} \colon \ell^1(\mathbb{Z}/n\mathbb{Z}) \to C(\mathbb{Z}/n\mathbb{Z})$ the Fourier transform. Then we have algebra isomorphisms

$$
\mathbb{C}^n \cong C(\mathbb{Z}/n\mathbb{Z}) \cong \mathcal{F}^{-1}(C(\mathbb{Z}/n\mathbb{Z})) = \ell^1(\mathbb{Z}/n\mathbb{Z})
$$

which make \mathbb{C}^n an L^1 -operator algebra with norm coming from the identification with $\ell^1(\mathbb{Z}/n\mathbb{Z})$.

Open Question

Are these the only two norms that make \mathbb{C}^n an L^1 -operator algebra?

For $n=2$, the identification of $M_0^1(\mathbb{Z}/3\mathbb{Z})$ with \mathbb{C}^2 carries none of these norms.