Equivalence theorems for Banach algebras of étale groupoids.

Alonso Delfín Joint work (in progress) with Yeong Chyuan Chung and Zhen Wang

CU Boulder

March 29 AMS Sectional Meeting (Lawrence, KS) Special Session on Advances in Operator Algebras

- 3 Banach algebras of étale groupoids
- 4 Equivalence Theorems

Groupoid algebras Equivalence Theorems

Banach Pairs

Fix a Banach algebra *B*. A (right) Banach *B*-module is a Banach space X that is a (right) *B*-module and such that $||xb||_X \le ||x||_X ||b||_B$ for all $x \in X$, $b \in B$.

Definition

A Banach B-pair is a pair (X, Y) such that X is a left Banach B-module, Y is a right Banach B-module, and there is a \mathbb{C} -bilinear pairing $\langle - | - \rangle_B \colon X \times Y \to B$ satisfying

- $\langle bx \mid y \rangle_B = b \langle x \mid y \rangle_B$
- $\langle x \mid yb \rangle_B = \langle x \mid y \rangle_B b$
- $\|\langle x \mid y \rangle_B\|_B \leq \|x\|_{\mathsf{X}} \|y\|_{\mathsf{Y}}.$

We say (X, Y) is *nondegenerate* when $BX \subseteq X$ and $YB \subseteq Y$ are both dense subspaces. We say (X, Y) is full when $(X | Y)_B \subseteq B$ is dense.

If A is a C*-algebra and X a right Hilbert A-module, then (\tilde{X}, X) is a Banach A-pair.

Groupoid algebras Equivalence Theorems

Banach Correspondences

For a (right) Banach *B*-module X, we denote $\operatorname{Hom}(X_B) \subseteq \mathcal{L}(X)$ to the algebra of bounded (right) *B*-module homomorphisms $X \to X$. For a Banach *B*-pair (X, Y), we define the Banach algebra $\mathcal{L}_B((X, Y))$ by

 $\mathcal{L}_B((\mathsf{X},\mathsf{Y})) = \{(t,s) \colon \langle t(x) \mid y \rangle_B = \langle x \mid s(y) \rangle_B\} \subseteq \operatorname{Hom}(_B\mathsf{X}) \times \operatorname{Hom}(\mathsf{Y}_B)^{\operatorname{op}}$

Definition

Let A and B be Banach algebras. We say $((X, Y), \varphi_A)$ is a Banach (A, B)-correspondence if (X, Y) is a Banach B-pair (X, Y) and $\varphi_A \colon A \to \mathcal{L}_B((X, Y))$ is a contractive algebra homomorphism.

Let $((X, Y), \varphi_A)$ be a Banach (A, B)-correspondence. For each $a \in A$ put $\varphi_A(a) = (t_a, s_a)$ and denote $x \cdot a = t_a(x)$ and $a \cdot y = s_a(y)$. Then X is a *B*-*A* Banach bimodule, Y is an *A*-*B* Banach bimodule, and

$$\langle x \cdot a \mid y \rangle_B = \langle x \mid a \cdot y \rangle_B$$

Groupoid algebras Equivalence Theorems

Morita Equivalence

Definition (V. Lafforgue (2002))

Two Banach algebras A and B are *Morita Equivalent* if there are Banach bimodules $X = {}_{B}X_{A}$, $Y = {}_{A}Y_{B}$, and bilinear pairings $\langle - | - \rangle_{B} \colon X \times Y \to B$ and $(- | -)_{A} \colon Y \times X \to A$ such that

- (X, Y) with $\langle | \rangle_B$ is a Banach (A, B)-correspondence that is full and nondegenerate as a Banach *B*-pair,
- (Y, X) with $(- | -)_A$ is a Banach (B, A)-correspondence that is full and nondegenerate as a Banach A-pair,

•
$$\langle x_1 \mid y \rangle_B \cdot x_2 = x_1 \cdot (y \mid x_2)_A$$
 for all $x_1, x_2 \in X, y \in Y$,

•
$$y_1 \cdot \langle x \mid y_2 \rangle_B = (y_1 \mid x)_A \cdot y_2$$
 for all $x \in X$, $y_1, y_2 \in Y$.

Example $(p \in (1, \infty), q = \frac{p}{p-1})$, and (Ω, Σ, μ) a measure space)

Then $\mathcal{K}(L^p(\mu))$ and $\mathbb C$ are Morita equivalent Banach algebras via the modules $\mathsf{X}=L^q(\mu),\,\mathsf{Y}=L^p(\mu)$ and the pairings

$$\langle \eta \mid \xi \rangle_{\mathbb{C}} = \int \eta \xi d\mu, \ \ (\xi \mid \eta)_{\mathcal{K}(L^p(\mu))} = (\zeta \mapsto \xi \langle \eta \mid \zeta \rangle_{\mathbb{C}})$$

Groupoid algebras Equivalence Theorems

Linking Algebra

Let A and B be Morita Equivalent Banach algebras via the pair $(X, Y) = ({}_BX_A, {}_AY_B).$

Definition

The Linking algebra is

$$\mathbf{L} = \begin{bmatrix} A & \mathsf{Y} \\ \mathsf{X} & B \end{bmatrix},$$

where the algebra structure is given by formal 2×2 matrix operations.

That is,

$$\begin{bmatrix} a_1 & y_1 \\ x_1 & b_1 \end{bmatrix} \begin{bmatrix} a_2 & y_2 \\ x_2 & b_2 \end{bmatrix} = \begin{bmatrix} a_1a_2 + (y_1 \mid x_2)_A & a_1 \cdot y_2 + y_1 \cdot b_2 \\ x_1 \cdot a_2 + b_1 \cdot x_2 & \langle x_1 \mid y_2 \rangle_B + b_1b_2 \end{bmatrix}.$$

At the vector space level $L = A \oplus X \oplus Y \oplus B$. However, if $(X, Y) \oplus B = ({}_BX \oplus {}_BB, Y_B \oplus B_B)$, then

$$L = \mathcal{K}_B((\mathsf{X},\mathsf{Y}) \oplus B) \subseteq \mathcal{L}_B((\mathsf{X},\mathsf{Y}) \oplus B).$$

- 3 Banach algebras of étale groupoids
- 4 Equivalence Theorems

Étale Groupoids

We fix a grouopoid G with set of composable pairs $G^{(2)} \subseteq G \times G$ and unit space $G^{(0)} = \{\gamma \in G : \gamma^{-1} = \gamma = \gamma^2\}$. Recall that the range and source maps $r, s : G \to G^{(0)}$ are given by $r(\gamma) = \gamma \gamma^{-1}$, $s(\gamma) = \gamma^{-1} \gamma$.

- G is a topological groupoid when G is a topological space such that $\gamma \mapsto \gamma^{-1}$ is a continuous map from G to G, and $(\gamma, \eta) \mapsto \gamma \eta$ is continuous map from $G^{(2)}$ to G.
- *G* is called étale if *G* is locally compact, locally Hausdorff, and in addition both *s* and *r* are local homeomorphisms.

The condition of being étale implies that both $G_u := s^{-1}(u)$ and $G^u := r^{-1}(u)$ are countable discrete spaces for each $u \in G^{(0)}$.

Thus, for an étale gruopoid G we think of both G_u and G^u as measure spaces equipped with counting measure.

Groupoid algebras Equivalence Theorems

Groupoid Actions

Throughout the talk G will be locally compact, Hausdorff, and étale.

Definition

A left G-space is a locally compact Hausdorff space Z together with a continuous open map $r_Z \colon Z \to G^{(0)}$ and a continuous map $(\gamma, z) \mapsto \gamma \cdot z \in Z$ defined on $G * Z = \{(\gamma, z) \colon s(\gamma) = r_Z(z)\}$, such that

•
$$r_Z(z) \cdot z = z$$
 for all $z \in Z$,

- if $(\gamma', \gamma) \in G^{(2)}$ and $(\gamma, z) \in G * Z$, then $(\gamma', \gamma \cdot z) \in G * Z$ and $(\gamma'\gamma) \cdot z = \gamma' \cdot (\gamma \cdot z)$.
 - We say Z is free if $\gamma \cdot z = z$ implies $\gamma = r_Z(z)$;
 - We say Z is proper if the map Θ: G * Z → Z × Z given by Θ(γ, z) = (γ · z, z) is a proper map of G * Z into Z × Z, i.e., Θ is a closed map such that the inverse image of compact sets are compact.

Right G-spaces are defined similarly except that the structure map is denoted by s_Z instead of r_Z .

Groupoid algebras Equivalence Theorems

Groupoid Equivalences

Definition

Let G and H be groupoids. A (G, H)-equivalence is a space Z such that

- Z is a free and proper left G-space;
- **2** Is a free and proper right H-space;
- \odot the actions of G and H on Z commute;
- r_Z induces a homeomorphism of Z/H onto $G^{(0)}$;
- s_Z induces a homeomorphism of $G \setminus Z$ onto $H^{(0)}$.

Let Z be a (G, H)-equivalence.

• There is a continuous map $Z *_s Z \to G$, $(z_1, z_2) \mapsto {}_G[z_1, z_2]$,

$$_{G}[z_{1}, z_{2}] \cdot z_{2} = z_{1} \forall (z_{1}, z_{2}) \in Z *_{s} Z.$$

• There is a continuous map $Z *_r Z \to G$, $(z_1, z_2) \mapsto [z_1, z_2]_H$,

$$z_1 \cdot [z_1, z_2]_H = z_2 \ \forall \ (z_1, z_2) \in Z *_r Z.$$

Groupoid algebras Equivalence Theorems

Banach groupoid algebras

Recall G will be locally compact, Hausdorff, and étale.

 $C_c(G) := \{f \colon G \to \mathbb{C} \colon f \text{ is continous and has compact support}\}$

We get a convolution product that makes $C_{\mathcal{C}}(G)$ into an algebra:

$$(f*g)(\gamma) = \sum_{\{\eta \in G: r(\eta) = r(\gamma)\}} f(\eta)g(\eta^{-1}\gamma).$$

There's three submultiplicative norms on $C_c(G)$:

$$||f||_{I,s} = \sup_{u \in G^{(0)}} \sum_{\gamma \in G_u} |f(\gamma)|, \quad ||f||_{I,r} = \sup_{u \in G^{(0)}} \sum_{\gamma \in G^u} |f(\gamma)|,$$

and $||f||_I = \max\{||f||_{I,s}, ||f||_{I,r}\}$. The completions of $C_c(G)$ with respect to these norms are respectively denoted by

$$F_{I,s}(G)$$
, $F_{I,r}(G)$, and $F_{I}(G)$.

Groupoid algebras Equivalence Theorems

Reduced L^p groupoid algebras

Fix $p \in [1, \infty]$. Each $u \in G^{(0)}$ induces a representation of $C_c(G)$ on $\ell^p(G_u)$, denoted $\operatorname{Ind}_u : C_c(G) \to \mathcal{L}(\ell^p(G_u))$, and defined by

$$[(\operatorname{Ind}_{u} f)\xi](\gamma) = \sum_{\{\eta \in G : r(\eta) = r(\gamma)\}} f(\eta)\xi(\eta^{-1}\gamma)$$

for every $f \in C_c(G), \xi \in \ell^p(G_u)$, and $\gamma \in G_u$. This gives the *p*-reduced norm on $C_c(G)$:

$$||f||_{p,\mathrm{red}} = \sup_{u \in G^{(0)}} ||\mathrm{Ind}_u f||_{\mathcal{L}(\ell^p(G_u))}.$$

We denote by $F_{red}^p(G)$ to the completion of $C_c(G)$ w.r.t. $||f||_{p,red}$.

Proposition

If $p\in(1,\infty)$ and p' is its Hölder conjugate, then

$$||f||_{p, \text{red}} \le ||f||_{I, s}^{1/p} ||f||_{I, r}^{1/p'} \le ||f||_{I}$$

Proof. Apply the Riesz-Thorin interpolation theorem.

Alonso Delfín (Joint work with Y. C. Chung and Z. Wang) Equivalent groupoid algebras

Full L^p groupoid algebras and amenability

Groupoid algebras

Let \mathcal{R}_p be the class of all contractive representations of $(C_c(G), \|-\|_I)$ on L^p spaces. Put

$$\|f\|_{L^p} = \sup_{\varphi \in \mathcal{R}_p} \|\varphi(f)\|.$$

 $F^p(G)$ is defined as the completion of $C_c(G)$ w.r.t. $||f||_{L^p}$.

Proposition

$$F^{1}_{red}(G) = F^{1}(G) = F_{I,s}(G)$$
 and $F^{\infty}_{red}(G) = F^{\infty}(G) = F_{I,r}(G)$.

Theorem (Gardella-Lupini (2017))

If G is an amenable groupoid, then $F_{red}^p(G)$ and $F^p(G)$ are p-completely isometrically isomorphic.

3 Banach algebras of étale groupoids

Known results

Theorem (P. Mulhy, J. Renault, D.P. Williams (1987))

If G and H are equivalent groupoids, then $F^2(G)$ and $F^2(G)$ are Morita equivalent C*-algebras.

Theorem (Known since 1983, proved A. Sims, D.P. Williams (2012))

If G and H are equivalent groupoids, then $F^2_{red}(G)$ and $F^2_{red}(G)$ are Morita equivalent C*-algebras.

Theorem (W. Paravicini (2008))

If G and H are equivalent groupoids, then $F_I(G)$ and $F_I(H)$ are Morita equivalent Banach algebras.

Groupoid algebras Equivalence Theorems

Equivalence Theorem for $F^p_{red}(G)$

Theorem (Chung, D., Wang (2025))

Let $p \in (1, \infty)$. If G and H are equivalent groupoids, then $F_{red}^p(G)$ and $F_{red}^p(G)$ are Morita equivalent L^p -operator algebras.

Proof idea: Given a (G, H) equivalence Z, the space $C_c(Z)$ has a natural structure of a $C_c(G)$ - $C_c(H)$ -bimodule (actions being left and right translation). Define $\langle - | - \rangle_{C_c(H)} : C_c(Z^{\text{op}}) \times C_c(Z) \to C_c(H)$ by

$$\langle \phi \mid \psi
angle_{\mathcal{C}_{\mathcal{C}}(H)}(\eta) = \sum_{r(\gamma) = r_Z(z)} \phi(\overline{\gamma^{-1} \cdot z}) \psi(\gamma^{-1} \cdot z \cdot \eta),$$

for any $s_Z(z) = r(\eta)$. Also $(- | -)_{C_c(G)} \colon C_c(Z) \times C_c(Z^{\operatorname{op}}) \to C_c(G)$ by

$$(\psi \mid \phi)_{C_c(G)}(\gamma) = \sum_{r(\eta)=s_Z(z)} \psi(z \cdot \eta) \phi(\overline{\gamma^{-1} \cdot z \cdot \eta}),$$

for any $r_Z(z) = r(\gamma)$. Next, we realize both $C_c(Z^{\text{op}})$ and $C_c(Z)$ as *p*-operator spaces, and complete them in the *p*-operator norm.

Suppose that G and H are countable discrete groups acting freely and properly on the left and right, respectively, of a compact Hausdorff space Z, such that the actions commute.

Then the transformation groupoids $G\rtimes Z/H$ and $H\rtimes G\backslash Z$ are equivalent and therefore

$$F^{p}_{\text{red}}(G \rtimes Z/H) \cong_{\mathrm{M}} F^{p}_{\text{red}}(H \rtimes G \setminus Z)$$

A result by Y. Choi, E. Gardella, and H. Thiel shows that for any $p \in [1, \infty)$, the algebra $F^p_{red}(G \rtimes X)$ is isometrically isomorphic to the crossed product $F^p_{red}(G, C(X))$. Thus,

$$F^{p}_{red}(G, C(Z/H)) \cong_{M} F^{p}_{red}(H, C(G \setminus Z)),$$

which is a p-version of the Green-Rieffel imprimitivity theorem.

Thank you! Questions?

Groupoid algebras Equivalence Theorems

The linking groupoid

Define the opposite space of a (G,H)-equivalence Z to be a copy $Z^{\rm op}:=\{\bar z:z\in Z\}$ of Z with the structure of a (H,G)-equivalence determined by

$$r(\bar{z}) = s(z), s(\bar{z}) = r(z), \eta \cdot \bar{z} = \overline{z \cdot \eta^{-1}}, \bar{z} \cdot \gamma = \overline{\gamma^{-1} \cdot z}.$$

Definition

The linking groupoid K of of a (G, H)-equivalence Z is defined as the disjoint union $K = G \sqcup Z^{\text{op}} \sqcup Z \sqcup H$.

K is a locally compact Hausdorff groupoid, and the groupoid operations are the ones inherited from G, Z^{op}, Z , and H:

- $K^{(0)} = G^{(0)} \sqcup H^{(0)}$,
- source and range are the inherited ones,
- multiplication and inversion restrict to the ones on G and H, and obey

$$z_1\overline{z_2}={}_G[z_1,z_2],\ z_1\overline{z_2}=[z_1,z_2]_H,\ z^{-1}=\overline{z},\ \text{ and }\overline{z}^{-1}=z.$$

Groupoid algebras Equivalence Theorems

Unconditional Completions

An unconditional completion $\mathcal{A}(G)$ of $C_c(G)$ is a Banach algebra containing $C_c(G)$ as a dense subalgebra and having the property

$$|f(\gamma)| \le |g(\gamma)| \ \forall \gamma \in G \implies ||f||_{\mathcal{A}(G)} \le ||g||_{\mathcal{A}(G)}$$

for all $f, g \in C_c(G)$.

Theorem (W. Paravicini (2008))

If G and H are equivalent groupoids, then A(G) and A(H) are Morita equivalent Banach algebras.

Unfortunately, the algebras $F_{\text{red}}^p(G)$ and $F_p(G)$ are not generally unconditional completions of $C_c(G)$. They are when $p = 1, \infty$, but we have counterexamples for all other $p \in (1, \infty)$.

What's Next?

- The main result is likely to hold also when G and H are locally Hausdorff. This is more technical to prove.
- Is F^p_{red}(K) isometrically isomorphic to the Linking algebra L of the equivalence bimodule (X_Z, Y_Z) between F^p_{red}(G) and F^p_{red}(H)?
- For the full algebra case, so far we only know

$$\left\| \begin{bmatrix} f & 0 \\ 0 & 0 \end{bmatrix} \right\|_{F^p(K)} \leq \|f\|_{F^p(G)}, \ \left\| \begin{bmatrix} 0 & 0 \\ 0 & g \end{bmatrix} \right\|_{F^p_{\mathrm{red}}(K)} \leq \|g\|_{F^p(H)}.$$

When p = 2, the reverse inequality comes Renault's disintegration theorem. We don't have a version of this for $p \neq 2$.