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Abstract

In the mathematical formulation of quantum mechanics, quantum states correspond to vectors in a
Hilbert space. The Fock space is a a Hilbert space constructed as a direct sum of tensor products of
a given Hilbert space. This construction is important as it allows quantum physicists to make sense of
the superposition of states and gives rise to creation and annihilation operators. The generalization of
this space using Hilbert Modules gives a way to construct a general class of C∗-algebras that includes
the Cuntz algebras and Crossed Products by Z. In this short document, I will go over the Fock space
construction and its generalization to Hilbert Modules.

1 Fock Space

In quantum mechanics, the quantum states of a quantum mechanical system are elements of a Hilbert
space H. For simplicity, one might think that H explains a one-particle system. Then, the tensor product
H⊗2 := H⊗H will represent the states of two non-interacting particles of the same type as the one described
by H. More generally, for n ≥ 1,

H⊗n := H⊗ · · · ⊗ H︸ ︷︷ ︸
ntimes

represents the states of a collection of n particles of the same type. By convention we set H0 := C. Then,
we can form the direct sum

F(H) :=
⊕
n≥0

H⊗n

The Hilbert space F(H) is known as the Fock space of H. This construction allows quantum physicists to
superpose states: if ξ, η and ζ are elements of H, it makes sense to talk about expressions like

ξ + η ⊗ ζ,

This in turn, permits the description of states on which also the number of particles is uncertain and becomes
an observable with probabilities and mean values as any other observable.

Now comes the more “mathematical” part of this. For a fixed element ξ ∈ H, we can define a map cξ from
H → H⊗2 by

cξ(η) := ξ ⊗ η

This is a linear map. Using the Physicist’s convention of linearity in second coordinate for the inner product,
we get,

〈cξ(η), ζ1 ⊗ ζ2〉 = 〈ξ ⊗ η, ζ1 ⊗ ζ2〉 = 〈ξ, ζ1〉〈η, ζ2〉 = 〈η, 〈ξ, ζ1〉ζ2〉

Thus, c∗ξ(ζ1 ⊗ ζ2) = 〈ξ, ζ1〉ζ2. The map cξ is a creation operator and its adjoint, c∗ξ , is an annihilation

operator. This extends to the Folk space F(H) by letting cξ(µ) := ξ ⊗ µ for any pure tensor µ ∈ H⊗n.

1



In quantum mechanics, the creation and annihilation operators are useful as they intertwine the different
H⊗n’s.

Now, let d ≥ 2 and let H be a Hilbert space with dimension d. We will see that, after taking some quotients,
the C∗ algebra generated by all the creation operators cξ for ξ ∈ H is in fact Od, the usual Cuntz algebra.

2 Hilbert Modules

Let A be a C∗-algebra.

Our goal is to generalize the Folk space construction starting with a Hilbert A-module E instead of a Hilbert
space H. As before, we will get creation operators cξ for each ξ ∈ E. Roughly speaking, we will be interested
in the C∗ algebra generated by all the cξ.

We now briefly recall some definitions about Hilbert Modules and we then explain the interior tensor product
construction between two Hilbert Modules.

Definition 2.1. A Hilbert A-module E is a right A-module together with a pairing 〈·, ·〉 : E ×E → A such
that

1. For each η ∈ E, the map 〈ξ, ·〉 : E → A is linear,

2. 〈ξ, ηa〉 = 〈ξ, η〉a for any ξ, η ∈ E and a ∈ A,

3. 〈ξ, η〉 = 〈η, ξ〉∗ for any ξ, η ∈ E,

4. 〈ξ, ξ〉 ≥ 0 in A for any ξ ∈ E and if 〈ξ, ξ〉 = 0, then ξ = 0.

5. E is complete with the norm ‖ξ‖ := ‖〈ξ, ξ〉‖1/2.

The pairing 〈·, ·〉 : E × E → A satisfying 1-4 above is referred to as an “A-valued inner product”.

Notice that Hilbert spaces are precisely Hilbert C-modules, with the Physicist’s convention of linearity in
second coordinate for the inner product. Thus, when taking an arbitrary C∗-algebra A, the Hilbert A-
modules are a good generalization of Hilbert spaces. However, many nice properties of Hilbert spaces, such
as complementability of subspaces, are not guaranteed for general Hilbert A-modules. Nevertheless, they
provide a good tool to study the C∗-algebra A. For example, one can visualize the multiplier algebra of A
using some kind of operators between Hilbert A-modules, the adjointable ones (see the definition below).
Also, there is an alternate description of K0(A) using isomorphism classes of finitely generated projective
A-modules.

Definition 2.2. Let E and F be a Hilbert A-modules. A map t : E → F is said to be adjointable if there
is a map t∗ : F → E such that for any ξ ∈ E, and η ∈ F

〈t(ξ), η〉 = 〈ξ, t∗(η)〉

The space of adjointable maps from E to F is denoted by L(E,F ) and L(E) := L(E,E).

It’s easy to check that adjointable maps are bounded linear maps with the usual operator norm and that
L(E) is a C∗-algebra.

Definition 2.3. Let E and F be a Hilbert A-modules. For ξ ∈ E and η ∈ F , we define a map θξ,η : F → E
by

θξ,η(ζ) := ξ〈η, ζ〉
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One easily checks that θξ,η ∈ L(E,F ) and that (θξ,η)
∗ = θη,ξ ∈ L(F,E). This gives an analogous of the class

of rank-one operators on Hilber spaces. So, we define an analogous of the compact operators by letting

K(E,F ) := span{θξ,η : ξ ∈ E, η ∈ F}

It’s also not hard to verify that K(E) := K(E,E) is a two sided ideal in L(E). We have to be careful and
not call these maps compact operators, in fact they do not have to be compact as maps between the two
Banach spaces E and F . For example, if A is an infinite dimensional unital C∗ algebra and E = F = A
with inner product given by a∗b, then idA = θ1,1 ∈ K(A) is not a compact operator.

We have the usual direct sum constructions to get new Hilbert A-modules from old. Indeed, if E1, . . . , En
are Hilbert A modules, the direct sum

k⊕
n=1

Ek := {ξ = (ξ1, . . . , ξn) : ξk ∈ Ek}

is again a Hilbert A-module with the component-wise right action of A and A-valued inner product

〈ξ, η〉 :=

n∑
k=1

〈ξk, ηk〉

If now (Eλ)λ∈Λ is an arbitrary family of Hilbert A-modules, we can form their direct sum⊕
λ∈Λ

Eλ :=

{
ξ = (ξλ)λ∈Λ ∈

∏
λ∈Λ

Eλ :
∑
λ∈Λ

〈ξλ, ξλ〉 converges in A

}
which is a right A-module with coordinate-wise action and it becomes a Hilbert A-module when equipped
with the well defined A-valued inner product

〈ξ, η〉 :=
∑
λ∈Λ

〈ξλ, ηλ〉

We will also need to produce new Hilbert modules via tensor products. There are two different ways to
talk about the tensor product of Hilbert modules. The first one is the exterior tensor product, which is a
construction that starts with a Hilbert A-module, a Hilbert B-module and produces a Hilbert A⊗B-module,
where A⊗B is the tensor product of C∗-algebras with the spatial norm. This one is not useful to us. The
second one, known as the interior tensor product, allows us to start with two Hilbert A-modules together
with some extra structure and will produce another A-Hilbert module.

We now explain the construction of the interior tensor product on its full generality. Let A and B be
C∗-algebras. Suppose E is a Hilbert B-module, that F is a Hilbert A-module and that there is a ∗-
homomorphism φ : B → L(F ). This naturally makes F a left B-module with the action induced by φ. We
can then form the algebraic tensor product of E and F over B, denoted by E�B F . To do so, we start with
the algebraic tensor product E � F and take the quotient by the subspace generated by

{ξb⊗ η − ξ ⊗ φ(b)η : ξ ∈ E, η ∈ F, b ∈ B}

This quotient is E �B F . We abuse notation and call the image of ξ ⊗ η in E �B F also by ξ ⊗ η. Then,
E �B F is a right A-module with an action defined by

(ξ ⊗ η)a = ξ ⊗ (ηa)

We now define an A-valued inner product on E �B F . First we put

〈ξ ⊗ η, ξ′ ⊗ η′〉 := 〈η, φ(〈ξ, ξ′〉)η′〉

for any ξ, ξ′ ∈ E and η, η′ ∈ F . One checks that this is indeed a well defined A-valued inner product on
E �B F , so to get a Hilbert A-module we complete E �B F with respect to the norm induced by this inner
product. We denote the completion E ⊗φ F and we call it the interior tensor product of E and F by φ.
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3 Fock space using Hilbert Modules

To generalize the Fock space construction to Hilbert modules instead of Hilbert spaces, we are interested in
using the interior tensor product construction described above in the case where A = B so that with two
Hilbert A-modules E and F together with a ∗-homomorphism φ : A → L(F ), we can form a new Hilbert
A-module E ⊗φ F .

Let E be a Hilbert A-module and φ : A→ L(E) a ∗-homomorphism, we can form a new Hilbert A-module

E⊗2 := E ⊗φ E

Next, to talk about E⊗3, one should except associativity of the interior tensor product. This is indeed the
case, as one can check that

(E ⊗φ E)⊗φ E = E ⊗φ (E ⊗φ E)

where for the right hand side construction we have that φ induces a ∗-homomorphism, also labeled as φ,
from A to L(E ⊗φ E) given by

φ(a)(ξ ⊗ η) := (φ(a)ξ)⊗ η

Therefore, for any n ≥ 1, it makes sense to define a Hilbert A-module

E⊗n = E ⊗φ · · · ⊗φ E︸ ︷︷ ︸
n times

By convention we put E⊗0 = A. We can now construct the Fock space type by letting

F(E) :=
⊕
n≥0

E⊗n

We are taking the direct sum of Hilbert modules above, so F(E) is again a Hilbert A-module. Exactly as
we did with the Hilbert space case, for each ξ ∈ E we have a creation operator cξ ∈ L(F(E)) so that if
µ ∈ E⊗n is an elementary tensor, then

cξ(µ) := ξ ⊗ µ ∈ E⊗(n+1)

A routine computation gives that the adjoint c∗ξ acts on an elementary tensor ν = ν1 ⊗ · · · ⊗ νn ∈ E⊗n as

c∗ξ(ν) = (φ(〈ξ, ν1〉)ν2)⊗ ν3 ⊗ . . .⊗ νn ∈ E⊗(n−1)

It’s now easy to check that if we regard each cξ as a map E⊗n → E⊗(n+1), then

c∗ξcη = φ(〈ξ, η〉) ∈ L(E⊗n), (1)

and
cηc
∗
ξ = θη,ξ ∈ L(E⊗(n+1)), (2)

where, as we did with φ(a) before, θη,ξ only acts on the first element of a tensor. Similarly, we also have

cη1 · · · cηnc∗ξ1 · · · c
∗
ξn = θη1⊗···⊗ηn,ξ1⊗···⊗ξn ∈ L(E⊗n). (3)

Now, for each m ≥ 0, we can also define a finite version of the Fock sapce by

Fm(E) :=
m⊕
n=0

E⊗n
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This is again a Hilbert A-module and we denote by J(E) to the C∗-algebra in L(F(E)) generated by

{L(Fm(E)) : m ≥ 0}

If we set
M(E) := {t ∈ L(F(E)) : tJ(E) ⊂ J(E), J(E)t ⊂ J(E)}

one checks that M(E) is the multiplier algebra of J(E). Notice that for each ξ ∈ E, we have cξ ∈ M(E).
Finally, we denote by sξ to the class of cξ in the quotient algebra M(E)/J(E). This gives the setting for
the following definition.

Definition 3.1. The Cuntz-Krieger algebra of a pair (E, φ) (where E is a Hilbert A-module and the
map φ : A→ L(E) is an isometric ∗-homomorphism), denoted by OE , is given by the C∗-algebra generated
in M(E)/J(E) by all the operators sξ, with ξ ∈ E. Similarly, the Toeplitz algebra of (E, φ), denoted by
TE , is the C∗-algebra generated in L(F(E)) by all the operators cξ, with ξ ∈ E.

Even though requiring φ to be isometric is not used at any step in the constructions we gave above, this is
done for simplicity. In fact, this gives

sup
‖η‖=1

‖ξ ⊗ η‖2 = sup
‖η‖=1

‖〈ξ ⊗ η, ξ ⊗ η〉‖ = sup
‖η‖=1

‖〈η, φ(〈ξ, ξ〉)η〉‖ = ‖φ(〈ξ, ξ〉)‖ = ‖〈ξ, ξ〉‖ = ‖ξ‖2

which forces the norm of cξ to be equal to ‖ξ‖.
To look at some properties of the algebras OE and TE we just defined, is useful to identify both A and L(E)
with their images in M(E)/J(E), given by

a(ξ1 ⊗ . . .⊗ ξn) = (φ(a)ξ1)⊗ . . .⊗ ξn

for a ∈ A and
t(ξ1 ⊗ . . .⊗ ξn) = t(ξ1)⊗ . . .⊗ ξn

for t ∈ L(E). More generally, we identify L(E⊗k) for k ≥ 1 with its image in M(E)/J(E) given by

t(ξ1 ⊗ . . .⊗ ξk ⊗ . . .⊗ ξn) = t(ξ1 ⊗ . . .⊗ ξk)⊗ . . .⊗ ξn

for each t ∈ L(E⊗k). With this in mind and using (1), (2) and (3) above, it’s easy to check the following
relations for the elements in OE :

• s∗ξsη = 〈ξ, η〉 ∈ A,

• sηs∗ξ = θη,ξ ∈ K(E) ⊂ L(E),

• sη1 · · · sηns∗ξ1 · · · s
∗
ξn

= θη1⊗···⊗ηn,ξ1⊗···⊗ξn ∈ K(E⊗n) ⊂ L(E⊗n),

• sξa = sξa and asξ = sφ(a)ξ for any a ∈ A,

• tsξ = st(ξ) for any t ∈ L(E).

Example 3.2. Let d ≥ 2 and regard E = Cd as a Hilbert space, i.e. a Hilbert C-module. If (ξk)
d
k=1 is an

orthonormal basis for E, we have that OE is generated by (sξk)dk=1. We clearly have that s∗ξjsξk = δj,k ∈ C
and moreover, one checks that

d∑
k=1

sξks
∗
ξk

= idE

This is a good indicator that OE is in fact the usual Cuntz algebra Od. Indeed, by the universal property
of Od, we get a surjective ∗-homomorphism Φ : Od → OE . Since Od is simple, Φ is also injective.
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