The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra A potential L^p version.

Review of Hilbert Modules

Cuntz-Pimsner Algebras and a potential L^p version

Alonso Delfín

Functional Analysis Seminar University of Oregon

October 29, 2020

Review of Hilbert Modules

Outline

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra <u>A potential L^p version</u>.

- **2** The Cuntz Algebras \mathcal{O}_d and \mathcal{E}_d
- 3 Review of Hilbert Modules
- The Fock space construction
- 5 The Toeplitz algebra
- 6 The Cuntz-Pimsner Algebra
- **7** A potential L^p version.

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra <u>A potential L^p version</u>.

Review of Hilbert Modules

Operator Algebras.

We denote by $\mathcal{L}(E)$ the bounded linear operator on a Banach space *E*. This is a Banach algebra with norm

$$||a|| := \sup_{\|\xi\|=1} ||a(\xi)||$$

- If \mathcal{H} is a Hilbert space, any $a \in \mathcal{L}(\mathcal{H})$ has an adjoint $a^* \in \mathcal{L}(\mathcal{H})$ characterized by $\langle a(\xi), \eta \rangle = \langle \xi, a^*(\eta) \rangle$.
- If H is a Hilbert space, C*-algebra A is a norm closed selfadjoint subalgebra of L(H).
- If (X, μ) is a measure space and $p \in [1, \infty)$, an L^p -operator algebra A is a norm closed subalgebra of $\mathcal{L}(L^p(X, \mu))$.

Review of Hilbert Modules

 \mathcal{O}_d

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra A potential L^p version.

Let $d \in \mathbb{Z}_{\geq 2}$ and \mathcal{H} an infinite dimensional separable Hilbert space. Then, there are elements $s_1, s_2, \ldots, s_d \in \mathcal{L}(\mathcal{H})$ such that

$$s_j^* s_j = 1$$
 and $\sum_{j=1}^d s_j s_j^* = 1$ (1)

For d = 2. Let $\{\xi_1, \xi_2, \ldots\}$ be an orthonormal basis for \mathcal{H} . Define $s_j : \mathcal{H} \to \mathcal{H}$ for j = 1, 2 by

 $s_1(\xi_n) = \xi_{2n}$ and $s_2(\xi_n) = \xi_{2n-1}$ $n \ge 1$

One quickly checks that

$$s_1^*(\xi_n) = \begin{cases} \xi_{n/2} & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd} \end{cases} \text{ and } s_2^*(\xi_n) = \begin{cases} \xi_{(n+1)/2} & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases}$$

4/32

Review of Hilbert Modules

 $s_1^* s_1 = 1 = s_2^* s_2$

The Toeplitz algebra

Therefore, $s_1^* s_1 = 1 = s_2^* s_2$.

Review of Hilbert Module

$$s_1 s_1^* + s_2 s_2^* = 1$$

The Toeplitz algebra

Hence, $s_1 s_1^* + s_2 s_2^* = 1$.

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra <u>A potential L^p version</u>.

Review of Hilbert Modules

Universal Property for \mathcal{O}_2

Definition

We define \mathcal{O}_d , the Cuntz algebra of order $d \in \mathbb{Z}_{\geq 2}$, as the sub-C^{*} algebra in $\mathcal{L}(\mathcal{H})$ generated by s_1, \ldots, s_d .

The algebra \mathcal{O}_d is a simple, unital C*-algebra and has the following universal property: If A is a unital C*-algebra containing elements a_1, \ldots, a_d such that

$$a_{j}^{*}a_{j} = 1$$
 and $\sum_{j=1}^{d} a_{j}a_{j}^{*} = 1$,

then there is a unique *-homomorphism $\varphi: \mathcal{O}_d \to A$ such that $\varphi(s_j) = a_j.$

Review of Hilbert Modules

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra A potential L^p version.

Definition

For $d \in \mathbb{Z}_{\geq 2}$, look at the generating isometries $s_1, \ldots, s_{d+1} \in \mathcal{O}_{d+1}$ and let \mathcal{E}_d be the sub-C^{*} algebra in $\mathcal{L}(\mathcal{H})$ generated by s_1, \ldots, s_d . That is, \mathcal{E}_d is the universal unital C^{*}-algebra generated by disometries, whose orthogonal ranges do not add up to 1.

The Cuntz algebra \mathcal{O}_d has elements satisfying the relations of \mathcal{E}_d , so by universality there is a surjective map $\mathcal{E}_d \to \mathcal{O}_s$. The kernel of this map is the ideal in \mathcal{E}_d generated by $s_{d+1}s_{d+1}^* = 1 - \sum_j^d s_j s_j^*$, which we denote by \mathcal{J}_d . Then $\mathcal{E}_d/\mathcal{J}_d \cong \mathcal{O}_d$.

8/32

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra <u>A potential L^p version</u>.

Review of Hilbert Modules

A-valued right inner product.

Definition

Let A be a C*-algebra and E a complex vector space which is also a right A-module. An A-valued right inner product on E is a map

$$\begin{array}{rccc} E \times E & \to & A \\ (\xi, \eta) & \mapsto & \langle \xi, \eta \rangle_A \end{array}$$

such that for any $\xi, \eta, \eta_1, \eta_2 \in E$, $a \in A$ and $\alpha \in \mathbb{C}$ we have

9/32

Review of Hilbert Modules

Hilbert Modules

Definition

Let A be a C*-algebra. A **Hilbert** A-module is a complex vector space E which is a right A-module with an A-valued right inner product and so that E is complete with the norm

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra

$$\|\xi\| := \|\langle \xi, \xi \rangle_A \|^{1/2}$$

We say that E is **full** if

$$\operatorname{span}\langle E,E\rangle_A := \operatorname{span}\{\langle \xi,\eta\rangle_A:\xi,\eta\in E\}$$

is dense in A.

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra A potential L^p version.

Review of Hilbert Modules

Hilbert Modules: Examples

Example

Let \mathcal{H} be a Hilbert space with the physicists convention that the inner product is linear in the second variable. Then, \mathcal{H} is clearly a full Hilbert \mathbb{C} -module.

Example

Any C^* -algebra A is clearly a full Hilbert A-module with inner product given by $(a, b) \mapsto a^*b$. More generally, A^n is also a full Hilbert A-module with the obvious "euclidean" inner product.

Example

The set of continuous sections of a vector bundle over a compact Hausdorff space X equipped with a Riemannian metric g is a Hilbert C(X)-module.

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra A potential L^p version.

Review of Hilbert Modules

Direct Sum of Hilbert Modules

Example

If $(E_{\lambda})_{\lambda \in \Lambda}$ is an arbitrary family of Hilbert A-modules, we can form their direct sum

$$\bigoplus_{\lambda \in \Lambda} E_{\lambda} := \left\{ \xi = (\xi_{\lambda})_{\lambda \in \Lambda} \in \prod_{\lambda \in \Lambda} E_{\lambda} : \sum_{\lambda \in \Lambda} \langle \xi_{\lambda}, \xi_{\lambda} \rangle \text{ converges in } A \right\}$$

which is a right A-module with coordinate-wise action and it becomes a Hilbert A-module when equipped with the well defined A-valued inner product

$$\langle \xi,\eta
angle:=\sum_{\lambda\in\Lambda}\langle \xi_\lambda,\eta_\lambda
angle$$

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra <u>A potential L^p version</u>.

Review of Hilbert Modules

Adjointable maps

A main difference between Hilbert modules and Hilbert spaces is that not every bounded linear map between Hilbert A-modules has an adjoint.

Definition

Let *E* and *F* be a Hilbert *A*-modules. A map $t: E \to F$ is said to be **adjointable** if there is a map $t^*: F \to E$ such that for any $\xi \in E$, and $\eta \in F$

 $\langle t(\xi),\eta\rangle = \langle \xi,t^*(\eta)\rangle$

The space of adjointable maps from E to F is denoted by $\mathcal{L}_A(E,F)$ and $\mathcal{L}_A(E) := \mathcal{L}_A(E,E)$.

It's almost immediate that adjointable maps between Hilbert modules are linear and bounded. A standard argument shows that $\mathcal{L}_A(E)$ is a C*-algebra when equipped with the operator norm.

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra <u>A potential L^p version</u>.

Review of Hilbert Modules

Generalized Compact Operators

We will have special interest for a particular case of adjointable maps, those of "rank 1":

Definition

Let *E* and *F* be a Hilbert *A*-modules. For $\xi \in E$ and $\eta \in F$, we define a map $\theta_{\xi,\eta}: F \to E$ by

$$\theta_{\xi,\eta}(\zeta) := \xi \langle \eta, \zeta \rangle_A$$

One easily checks that

• $\theta_{\xi,\eta} \in \mathcal{L}_A(E,F)$

•
$$(\theta_{\xi,\eta})^* = \theta_{\eta,\xi} \in \mathcal{L}_A(F,E)$$

• $\|\theta_{\xi,\eta}\| \leq \|\xi\|\|\eta\|$

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra A potential L^p version.

Review of Hilbert Modules

Generalized Compact Operators

The maps $\theta_{\xi,\eta}$ give an analogous of the of rank-one operators on Hilbert spaces. So, we define an analogous of the compact operators by letting

$$\mathcal{K}_A(E,F) := \overline{\operatorname{span}\{\theta_{\xi,\eta}: \xi \in E, \eta \in F\}}$$

It's also not hard to verify that $\mathcal{K}_A(E) := \mathcal{K}_A(E, E)$ is a closed two sided ideal in $\mathcal{L}_A(E)$, whence $\mathcal{K}(E)$ is also a C^* -algebra.

Review of Hilbert Modules

C*-correspondences

Definition

Let A be a C*-algebra. A C*-correspondence over A is a pair (E, φ) where E is a Hilbert right A-module and a $\varphi : A \to \mathcal{L}_A(E)$ is a *-homomorphism.

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra

Remark

Even though it's not strictly necessary, from now on we will assume that the map φ of a C^{*}-correspondence over A is injective and therefore isometric. This is done for simplicity.

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra A potential L^p version.

Review of Hilbert Modules

Inner Tensor Product

Given (E, φ_E) and (F, φ_F) two C^{*}-correspondence over A, we use the inner tensor product construction to produce $(E \otimes_{\varphi_F} F, \widetilde{\varphi_E})$, a new C^{*}-correspondence over A.

More precisely, $E \otimes_{\varphi_F} F$ is a Hilbert module such that the middle action is glued:

 $\xi a \otimes \eta - \xi \otimes \varphi_F(a)\eta = 0,$

it's an $A\operatorname{-module}$ with right action satisfying

$$(\xi \otimes \eta)a = \xi \otimes (\eta a),$$

it has an A-valued right inner product such that

$$\langle \xi_1 \otimes \eta_1, \xi_1 \otimes \eta_2 \rangle = \langle \eta_1, \varphi_F(\langle \xi_1, \xi_2 \rangle) \eta_2 \rangle.$$

Review of Hilbert Modules

Inner Tensor Product

In fact, $E \otimes_{\varphi_F} F$ is the completion of the algebraic tensor product $E \odot_A F$ with respect to the norm induced by the above inner product.

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra

Finally, $\widetilde{\varphi_E}: A \to \mathcal{L}_A(E \otimes_{\varphi_F} F)$ is defined on elementary tensors by

$$\widetilde{\varphi_E}(a)(\xi\otimes\eta)=(\varphi_E(a)(\xi))\otimes\eta$$

From now on we'll do an abuse of notation and drop the \sim on top of φ_F . In fact, any adjointable map acting on a Hilbert A module, also acts on $E \otimes -$ by only acting on the E portion.

Review of Hilbert Modules

The Fock space

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra A potential L^p version.

Definition

Given (E, φ) a C^{*}-correspondence over A, the Fock space of E is the Hilbert A-module given by

$$\mathcal{F}(E) := \bigoplus_{n \ge 0} E^{\otimes n},$$
$$P := A \text{ and } E^{\otimes n} := E \otimes_{a} \dots \otimes_{a} E.$$

where $E^{\otimes 0} := A$ and $E^{\otimes n} := \underbrace{E \otimes_{\varphi} \dots \otimes_{\varphi} E}_{n \text{ times}}$.

An arbitrary element of $\mathcal{F}(E)$ is a tuple $(\kappa_n)_{n\geq 0}$ where each κ_n is an element of the n^{th} degree tensor product of E.

19/32

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra A potential L^p version.

Review of Hilbert Modules

Creation and Annihilation Operators

For a fixed $\xi \in E$ and any $n \in \mathbb{Z}_{\geq 1}$ we have a *creation operator* $c_{\xi}: E^{\otimes n} \to E^{\otimes (n+1)}$ given by

$$c_{\xi}(\eta):=\xi\otimes\eta,\quad\forall\;\eta\in E^{\otimes n}$$

If n = 0 we set $c_{\xi} : A \to E$

$$c_{\xi}(a) := \xi a, \quad \forall \in A$$

Each c_{ξ} is an adjointable map where, if $n \in \mathbb{Z}_{\geq 1}$, $c_{\xi}^* : E^{\otimes (n+1)} \rightarrow : E^{\otimes n}$ is an *annihilation operator*, satisfying

$$\mathcal{L}^*_{\xi}(\zeta\otimes\eta)=arphi(\langle\xi,\zeta
angle)\eta,\quadorall\ \zeta\in E,\eta\in E^{\otimes n}$$

and $c_{\xi}^*: E \to A$ is simply

$$c_{\xi}^{*}(\zeta) = \langle \xi, \zeta \rangle, \quad \forall \ \zeta \in E,$$

20/32

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra A potential L^p version.

Review of Hilbert Modules

Creation and Annihilation Operators

Notice that c_{ξ} increases the degree by one, whereas c_{ξ}^* decreases the degree by one. Let $\xi, \zeta \in E$ and $n \ge 0$. The map $c_{\xi}^* c_{\zeta} : E^{\otimes n} \to E^{\otimes n}$ satisfies:

$$c_{\xi}^*c_{\zeta}=\varphi(\langle\xi,\zeta\rangle)\in\mathcal{L}_A(E^{\otimes n}),$$

Also the map $c_{\xi}c_{\zeta}^*:E^{\otimes (n+1)}\to E^{\otimes (n+1)},$ satisfies

$$c_{\xi}c_{\zeta}^* = \theta_{\xi,\zeta} \in \mathcal{L}_A(E^{\otimes (n+1)}).$$

We abuse notation and consider the elements c_{ξ} as elements of $\mathcal{L}_A(\mathcal{F}(E))$ acting coordinate-wise:

$$c_{\xi}((\kappa_n)_{n\geq 0}):=(c_{\xi}(\kappa_n))_{n\geq 0}$$
 and $c^*_{\xi}((\kappa_n)_{n\geq 0}):=(c^*_{\xi}(\kappa_n))_{n\geq 1}$

Review of Hilbert Modules

 \mathcal{T}_E

The Fock space construction **The Toeplitz algebra** The Cuntz-Pimsner Algebra <u>A potential</u> L^p version.

Definition

Let (E, φ) be a C^* -correspondence over A. We define \mathcal{T}_E , the Toeplitz algebra of E, as the C^* -subalgebra in $\mathcal{L}_A(\mathcal{F}(E))$ generated by the creation operators $\{c_{\xi} : \xi \in E\}$.

Universal property: Suppose B is another C*-algebra and that there is a *-homomoprhism $\pi: A \to B$, a linear map $t: E \to B$ such that

•
$$t(\xi)^*t(\zeta) = \pi(\langle \xi, \zeta \rangle)$$
 for $\xi, \zeta \in E$,

$$a \pi(a)t(\xi) = t(\varphi(a)\xi)$$

Then π has is a unique extension $\widehat{\pi} : \mathcal{T}_E \to B$ that sends c_{ξ} to $t(\xi)$.

The Fock space construction **The Toeplitz algebra** The Cuntz-Pimsner Algebra A potential L^p version.

Theorem

Let $d \in \mathbb{Z}_{\geq 2}$ and regard \mathbb{C}^d as a Hilbert \mathbb{C} -module. Let $\varphi: \mathbb{C} \to \mathcal{L}_{\mathbb{C}}(\mathbb{C}^d)$ by given by

$$\varphi(z)(\zeta_1,\ldots,\zeta_d):=(z\zeta_1,\ldots,z\zeta_d)$$

Then (\mathbb{C}^d, φ) is a C^* correspondence and $\mathcal{T}_{\mathbb{C}^d} \cong \mathcal{E}_d$.

Proof. Consider $v_1 := c_{(1,0)}$ and $v_2 := c_{(0,1)}$.

$$(v_1^*v_1) = c_{(1,0)}^*c_{(1,0)} = \varphi(\langle (1,0), (1,0) \rangle) = \varphi(1) = \mathrm{id}$$

and similarly $v_2^*v_2 = \mathrm{id}$. This gives a surjective *-homomorphism $\psi:\mathcal{E}_2 \to \mathcal{T}_{\mathbb{C}^2}$.

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra A potential L^p version.

Review of Hilbert Modules

Proof. Let $\pi:\mathbb{C}\to\mathcal{E}_2$ be given by $\pi(z):=z1$ and $t:\mathbb{C}^2\to\mathcal{E}_2$ be given by

$$t(\zeta_1,\zeta_2)=\zeta_1s_1+\zeta_2s_2$$

It's obvious that π is a *-homomorphism and that t is a linear map. Since $s_j^*s_j=1,$ we get

$$t(\zeta_1,\zeta_2)^*t(\eta_1,\eta_2) = (\overline{\zeta_1}\eta_1 + \overline{\zeta_2}\eta_2)1 = \pi(\langle (\zeta_1,\zeta_2), (\eta_1,\eta_2) \rangle)$$

Finally,

 $\pi(z)t(\zeta_1,\zeta_2) = z1(\zeta_1s_1 + \zeta_2s_2) = z\zeta_1s_1 + z\zeta_2s_2 = t(\varphi(z)(\zeta_1,\zeta_2))$

Hence, universality gives the *-homomorphism $\widehat{\pi} : \mathcal{T}_{\mathbb{C}^2} \to \mathcal{E}_2$, the inverse of ψ .

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra A potential L^p version.

Review of Hilbert Modules

Remark

Notice that $\mathcal{T}_{\mathbb{C}^2} \neq \mathcal{O}_2$. Indeed, if $v_1 := c_{(1,0)}$ and $v_2 := c_{(0,1)}$ are asin the proof, then $v_1v_1^* + v_2v_2^*$ does not quite act as the identity on all degrees of $\mathcal{F}(\mathbb{C}^2)$. In fact, it only fails to do so at degree 0, because the adjoint kills everything at n = 0. Indeed,

$$(v_1v_1^* + v_2v_2^*)((\kappa_n)_{n\geq 0}) = ((\kappa_n)_{n\geq 1})$$

Thus, $1 - (v_1v_1^* + v_2v_2^*)$ is in fact a rank one operator who extracts the 0 coefficient, that is

$$1 - (v_1 v_1^* + v_2 v_2^*) = \theta_{(1,0,0,\dots),(1,0,0,\dots)}$$

This problem will no longer occur when we define the Cuntz-Pimsner algebra $\mathcal{O}_{\mathbb{C}^2}$, as we will be taking a quotient by a set that contains $1 - (v_1v_1^* + v_2v_2^*)$.

25/32

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra A potential *L^p* version

Review of Hilbert Modules

Killing some finite rank operators

Definition

For a C^{*} correspondence (E, φ) over A, we define the ideal $J_E := \varphi^{-1}(\mathcal{K}_A(E)).$

Lemma

Let (E, φ) be a C^* correspondence over A. Then $\mathcal{F}(E)J_E$ is a Hilbert J_E -module and

 $\mathcal{K}_{J_E}(\mathcal{F}(E)J_E) = \overline{\operatorname{span}}\{\theta_{\kappa a,\tau} : \kappa, \tau \in \mathcal{F}(E), a \in J_X\} \trianglelefteq \mathcal{L}_A(\mathcal{F}(E))$

We will now consider the quotient C*-algebra $Q_A(E) := \mathcal{L}_A(\mathcal{F}(E))/\mathcal{K}_{J_E}(\mathcal{F}(E)J_E)$ together with the quotient map $q: \mathcal{L}_A(\mathcal{F}(E)) \to Q_A(E)$.

Review of Hilbert Modules

\mathcal{O}_E

Definition

Let (E, φ) be a C^* -correspondence over A. We define \mathcal{O}_E , the Cuntz-Pimsner algebra of E, as the C^* -subalgebra in $\mathcal{Q}_A(E)$ generated by the image of the creation operators $\{q(c_{\xi}) : \xi \in E\}$.

Universal property. Suppose *B* is another C^* -algebra and that there is a *-homomoprhism $\pi: A \to B$, a linear map $t: E \to B$ s.t.

1.
$$t(\xi)^*t(\zeta) = \pi(\langle \xi, \zeta \rangle)$$
 for $\xi, \zeta \in E$,

The Toeplitz algebra The Cuntz-Pimsner Algebra

2.
$$\pi(a)t(\xi) = t(\varphi(a)\xi)$$

Further, if $\Theta_t : \mathcal{K}_A(E) \to B$ is s.t. $\Theta_t(\theta_{\xi,\zeta}) = t(\xi)t(\zeta)^*$ for $\xi, \zeta \in E$, and suppose also that

3.
$$\pi(a) = \Theta_t(\varphi(a))$$
 for $a \in J_E$

Then there π has is a unique extension $\widehat{\pi} : \mathcal{O}_E \to B$ that sends $q(c_{\xi})$ to $t(\xi)$.

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra A potential L^p version.

Theorem

Let $d \in \mathbb{Z}_{\geq 2}$ and regard \mathbb{C}^d as a Hilbert \mathbb{C} -module. Let $\varphi: \mathbb{C} \to \mathcal{L}_{\mathbb{C}}(\mathbb{C}^d)$ by given by

$$\varphi(z)(\zeta_1,\ldots,\zeta_d):=(z\zeta_1,\ldots,z\zeta_d)$$

Then (\mathbb{C}^d, φ) is a C^* correspondence and $\mathcal{O}_{\mathbb{C}^d} \cong \mathcal{O}_d$.

Proof. We will show that $\mathcal{O}_{\mathbb{C}^2}$ fits the universal property for \mathcal{O}_2 . Well, if $v_1 := q(c_{(1,0)})$ and $v_2 := q(c_{(0,1)})$. Using our computations from the Toeplitz case we have

$$v_1^*v_1 = v_2^*v_2 = q(\mathrm{id}_{\mathcal{L}_A(\mathcal{F}(\mathbb{C}^2))}) = 1$$

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra A potential L^p version.

Review of Hilbert Modules

Proof. Notice that $\theta_{(1,0,0,\ldots),(1,0,0,\ldots)} \in \mathcal{K}_{J_E}(\mathcal{F}(E)J_E)$ because in this case $\mathcal{L}_C(\mathbb{C}^2) = \mathcal{K}_{\mathbb{C}}(\mathbb{C}^2)$ and therefore $J_{\mathbb{C}^2} = \mathbb{C}$. Thus, following the computations from a previous Remark we have

$$v_1v_1^* + v_2v_2^* = q(\mathrm{id} - \theta_{(1,0,0,\dots),(1,0,0,\dots)}) = q(\mathrm{id}) = 1$$

Hence, universality gives a surjective *-homomorphism $\mathcal{O}_2 \to \mathcal{O}_{\mathbb{C}^2}$ sending s_j to v_j , for j = 1, 2. Since \mathcal{O}_2 is simple, such homomorphism has to be injective and we are done.

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra A potential L^p version.

Review of Hilbert Modules

The L^p -Cuntz algebra

Definition

Let $d \ge 2$ be an integer. We define the **Leavitt algebra** L_d to be the universal complex unital algebra generated by elements $s_1, s_2, \ldots, s_d, t_1, t_2, \ldots, t_d$ satisfying

$$t_j s_k = \delta_{j,k}$$
 and $\sum_{j=1}^d s_j t_j = 1$

There is a well defined norm on L_d that comes from a particular kind of algebraic representations of L_d on σ -finite L^p spaces. The completion of L_d with respect to this norm is the L^p -Cuntz algebra \mathcal{O}_d^p .

I have been working on a Fock space-type construction for an L^p operator algebra A that yields a class of L^p -operator algebras that contains the L^p -Cuntz algebras. Looks like looking at the notion of Rigged Hilbert modules introduced by D.P. Blecher gives a reasonable starting point.

One needs to give an operator space type definition for L^p spaces. Some issues that might appear along the road will require to fix a representation $\pi: A \to \mathcal{L}(L^p(X, \mu))$, choose a particular tensor product and a particular type of completion.

The Fock space construction The Toeplitz algebra The Cuntz-Pimsner Algebra A potential L^p version.

Questions?

Alonso Delfín