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Banach spaces

Definition

A Banach space is a complex vector space E with a norm ‖ − ‖E that
makes E a complete metric space.

For a Banach space E, we denote by Ba(E) its closed unit ball. That is

Ba(E) := {ξ ∈ E : ‖ξ‖E ≤ 1}.

If F is also a Banach space, we let L(E, F) be the space of bounded
linear maps from E to F, which comes equipped with the operator norm

‖a‖L(E,F) := sup{‖aξ‖F : ξ ∈ Ba(E)}.

When E = F, we set L(E) := L(E, E), which becomes a Banach algebra
with multiplication given by composition of operators.
The dual of E will be denoted by E′, that is

E′ := L(E,C).
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Finite Dimensional Lp-spaces

In this talk we will be mostly interested in the Banach spaces `p
n, where

n ∈ Z≥1 and p ∈ [1, ∞]. That is, `p
n = (Cn, ‖ − ‖p) where

‖ξ‖p :=



(
n

∑
j=1
|ξ( j)|p

)1/p

p ∈ [1, ∞)

max
j∈{1,...,n}

|ξ( j)| p = ∞
.

Here for p, q ∈ [1, ∞] and d, n ∈ Z≥1, the space L(`p
d , `q

n) is simply the
space of n× d matrices with complex entries equipped with the p→ q
operator norm:

Mp→q
n,d (C) := L(`p

d , `q
n), ‖a‖p→q := max{‖aξ‖q : ξ ∈ Ba(`p

d)}
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Unit p-circles in R2

For p ∈ [1, ∞) let

Bp := {ξ : {1, 2} → R : |ξ(1)|p + |ξ(2)|p = 1}.
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Letting p→ ∞
B∞ := {ξ : {1, 2} → R : : lim

p→∞ |ξ(1)|p + |ξ(2)|p = 1}

= {ξ : {1, 2} → R : max{|ξ(1)|, |ξ(2)|} = 1}.
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(1→ 2)-Operator Norm: Example

Let a : R2 → R2 be given by a =

(
1 3
2 4

)
. How to find ‖a‖1→2?
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1-Operator Norm: Example

Let a : R2 → R2 be given by a =

(
1 3
2 4

)
. How to find ‖a‖1→1?
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p-operator norms in Cn: Known Cases

Mp
n(C) is the algebra of d× d complex valued matrices equipped with

the p-operator norm:
Mp

n(C) = L(`
p
n)

For a ∈ Mp
n(C) we defined ‖a‖p→p := max

‖ξ‖p≤1
‖aξ‖p.

If a = (a j,k)
n
j,k=1, then

‖a‖1→1 = max
k∈{1,...,n}

n

∑
j=1
|a j,k|,

‖a‖2→2 = max
λ∈σ(aT a)

√
|λ|,

‖a‖∞→∞ = max
j∈{1,...,n}

n

∑
k=1
|a j,k|.

Otherwise, for a general matrix a, the value ‖a‖p→p is NP-hard to
compute.

Alonso Delfín and REU(G)-group C*-modules and p-operator norms



11/21

Preliminaries
Hölder Duality

C*-like Lp-modules
Main results

Outline

1 Preliminaries

2 Hölder Duality

3 C*-like Lp-modules

4 Main results

Alonso Delfín and REU(G)-group C*-modules and p-operator norms



12/21

Preliminaries
Hölder Duality

C*-like Lp-modules
Main results

Classic Hölder Duality

For p ∈ [1, ∞] we denote p′ its Hölder conjugate. That is,

1
p
+

1
p′

= 1.

Let (Ω,µ) be a measure space and consider the dual pairing
〈−,−〉p : Lp′(µ)× Lp(µ)→ C given by

〈η,ξ〉p =
∫
Ω
ηξdµ.

This defines Φ : Lp′(µ)→ Lp(µ)′ by [Φ(η)](ξ) = 〈η,ξ〉p.

Theorem (Classic Hölder Duality)

Φ is an isometric isomorphism from Lp′(µ) to Lp(µ)′ whenever
1 p ∈ (1, ∞).
2 p = 1 and µ is sigma-finite,
3 p = ∞ and µ is the counting measure on {1, . . . , n} for n ∈ Z≥1.

Alonso Delfín and REU(G)-group C*-modules and p-operator norms



13/21

Preliminaries
Hölder Duality

C*-like Lp-modules
Main results

Hölder Duality in finite dimension

`
p′
n is isometrically isomorphic to (`

p
n)
′ via the map Φ : `p′

n → (`
p
n)
′

[Φ(η)](ξ) =
n

∑
j=1

η( j)ξ( j) ∈ C.

This can be reinterpreted through a ‘p-operator space’ perspective:

`
p
n ∼= L(`

p
1 , `p

n) = Mp
n,1(C) `

p′
n ∼= L(`

p
n, `p

1) = Mp
1,n(C).

The pairing is now multiplication of a 1× n-matrix by a n× 1-matrix:

(η | ξ) =
[
η(1) . . . η(n)

] ξ(1)...
ξ(n)

 =
d

∑
j=1

η( j)ξ( j).

Furthermore, Hölder duality gives

‖ξ‖p = max{|(η | ξ)| : η ∈ Ba(`p′
n )}, ‖η‖p′ = max{|(η | ξ)| : ξ ∈ Ba(`p

n)}.
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Definition

Let (Ω0,µ0) and (Ω1,µ1) be measure spaces, let p ∈ [1, ∞], and let
A ⊆ L(Lp(µ0)) be a closed subalgebra. An Lp-module over A is a pair
(X,Y) such that X ⊆ L(Lp(µ0), Lp(µ1)) and Y ⊆ L(Lp(µ1), Lp(µ0))
are closed subspaces s.t.

1 xa ∈ X for all x ∈ X, a ∈ A,
2 ay ∈ Y for all y ∈ Y, a ∈ A.
3 yx ∈ A for all x ∈ X, y ∈ Y,

Condition 3 gives a pairing (− | −)A : Y× X→ A defined by

(y | x)A = yx ∈ A.

Definition

We say that the module (X,Y) is C*-like if both the norms in X and Y
are recovered by the pairing, that is for every x ∈ X and y ∈ Y we have

4 ‖x‖ = sup{‖(y | x)A‖ : y ∈ Ba(Y)},
5 ‖y‖ = sup{‖(y | x)A‖ : x ∈ Ba(X)}.
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Examples

Let X be a right Hilbert module over a C*-algebra A. Then (X, X̃) is
a C*-like L2-module over A.
(Lp(µ), Lp′(µ)) is a C*-like Lp-module over C.
(Lp′(µ), Lp(µ)) is a C*-like Lp-module over K(Lp(µ)).
A ⊆ L(Lp(µ)) a closed subalgebra. Then (A, A) is an Lp-module
over A, it is C*-like as long as A has a contractive approximate unit.

Definition (Column-Row modules)

Let (X,Y) be an Lp-module over A, let n ∈ Z≥1 ∪ {∞}, and define

Mp
n,1(X) := `

p
n ⊗p X, Mp

1,n(Y) = `
p′
n ⊗p Y.

(Mp
n,1(X), Mp

1,n(Y)) is an Lp-module over A.

Question: When is (Mp
n,1(X), Mp

1,n(Y)) C*-like?

Alonso Delfín and REU(G)-group C*-modules and p-operator norms
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Positive Results

Theorem (REU(G)-2025)

Let p ∈ [1, ∞), let d, n ∈ Z≥1, and ley A ⊆ Mp
d (C) a subalegbra. Then

(Mp
n,1(A), Mp

1,n(A)) is C*-like whenever

A = Mp
d (C).

A is any block diagonal subalgebra of Mp
d (C).

Comments:
1 Both instances are likely to hold as well when n = ∞.
2 What happens for (Lp(µ)⊗p A, Lp′(µ)⊗p A) when µ is a more

general measure?
3 Observe that in both cases, idd ∈ A. Is this a sufficient condition?
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Counter Examples

Consider A ⊆ Mp
2 (C) defined by A =

{[
0 λ
0 0

]
: z ∈ C

}
. A is simply

C with trivial multiplication, so (Mp
n,1(A), Mp

1,n(A)) has 0 pairing.
Hence, (Mp

n,1(A), Mp
1,n(A)) cannot be C*-like. Note that id2 6∈ A.

The example above is likely generailzable to any nilpotent subalgebra of
Mp

d (C).

Let A =

{
u
[
λ1 0
0 λ2

]
u : λ1, λ2 ∈ C

}
, where u = 1√

2

[
1 1
1 −1

]
.

Then (M1
n,1(A), M1

1,n(A)) is not C*-like, even though id2 ∈ A.

We still don’t know whether this last example is C*-like for p 6= 1, 2.
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Thank you!
Questions?

Alonso Delfín and REU(G)-group C*-modules and p-operator norms



21/21

Preliminaries
Hölder Duality

C*-like Lp-modules
Main results

(p→ q)-operator norms in Cd: Known cases

Mp→q
d (C) is the algebra of d× d complex valued matrices equipped with

the (p→ q)-operator norm:

Mp→q
d (C) = L(`p

d , `q
d)

For a ∈ Mp→q
d (C) we defined ‖a‖p→q := max

‖ξ‖p1≤1
‖aξ‖q.

For a = (a j,k)
d
j,k=1:‖a‖1→2 = max

k
‖(a1,k, . . . , ad,k)‖2,

‖a‖1→∞ = max
k
‖(a1,k, . . . , ad,k)‖∞,

‖a‖2→∞ = max
j
‖(a j,1, . . . , a j,d)‖∞.

However, the computability of ‖a‖2→1, ‖a‖∞→1, and ‖a‖∞→2 is
NP-hard.
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