C*-modules and p-operator norms

Alonso Delfín Joint work with A. Calin, I. Cartwright, L. Coffman, C. Girard, J. Goldrick, A. Nerella, and W. Wu

CU Boulder

April 4, 2025

2 Hölder Duality

3 C*-like L^p-modules

Banach spaces

Definition

A Banach space is a complex vector space E with a norm $|| - ||_E$ that makes E a complete metric space.

For a Banach space E, we denote by Ba(E) its closed unit ball. That is

$$Ba(E) := \{\xi \in E : \|\xi\|_E \le 1\}.$$

If F is also a Banach space, we let $\mathcal{L}(E, F)$ be the space of bounded linear maps from E to F, which comes equipped with the operator norm

$$||a||_{\mathcal{L}(E,F)} := \sup\{||a\xi||_F \colon \xi \in \operatorname{Ba}(E)\}.$$

When E = F, we set $\mathcal{L}(E) := \mathcal{L}(E, E)$, which becomes a Banach algebra with multiplication given by composition of operators. The dual of E will be denoted by E', that is

$$E':=\mathcal{L}(E,\mathbb{C}).$$

C*-like L^p-modules Main results

Finite Dimensional L^p -spaces

In this talk we will be mostly interested in the Banach spaces ℓ_n^p , where $n \in \mathbb{Z}_{\geq 1}$ and $p \in [1, \infty]$. That is, $\ell_n^p = (\mathbb{C}^n, \|-\|_p)$ where

$$\|\xi\|_{p} := \begin{cases} \left(\sum_{j=1}^{n} |\xi(j)|^{p}\right)^{1/p} & p \in [1, \infty) \\\\ \max_{j \in \{1, \dots, n\}} |\xi(j)| & p = \infty \end{cases}$$

Here for $p, q \in [1, \infty]$ and $d, n \in \mathbb{Z}_{\geq 1}$, the space $\mathcal{L}(\ell_d^p, \ell_n^q)$ is simply the space of $n \times d$ matrices with complex entries equipped with the $p \to q$ operator norm:

$$M_{n,d}^{p \to q}(\mathbb{C}) := \mathcal{L}(\ell_d^p, \ell_n^q), \ \|a\|_{p \to q} := \max\{\|a\xi\|_q \colon \xi \in \operatorname{Ba}(\ell_d^p)\}$$

C*-like L^p-modules Main results

Unit *p*-circles in \mathbb{R}^2

For $p\in [1,\infty)$ let

$$B_p := \{\xi \colon \{1,2\} \to \mathbb{R} \colon |\xi(1)|^p + |\xi(2)|^p = 1\}.$$

C*-like L^p-modules Main results

Letting $p \to \infty$

$$B_{\infty} := \{\xi \colon \{1,2\} \to \mathbb{R} \colon : \lim_{p \to \infty} |\xi(1)|^p + |\xi(2)|^p = 1\}$$
$$= \{\xi \colon \{1,2\} \to \mathbb{R} \colon \max\{|\xi(1)|, |\xi(2)|\} = 1\}.$$

7/21

C*-like L^p-modules Main results

 $(1 \rightarrow 2)$ -Operator Norm: Example

Let
$$a : \mathbb{R}^2 \to \mathbb{R}^2$$
 be given by $a = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$. How to find $||a||_{1\to 2}$?

 $||a||_{1\to 2} = 5$

C*-like L^p-modules Main results

1-Operator Norm: Example

Let
$$a : \mathbb{R}^2 \to \mathbb{R}^2$$
 be given by $a = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$. How to find $||a||_{1 \to 1}$?

 $||a||_{1\to 1} = 7$

p-operator norms in \mathbb{C}^n : Known Cases

C*-like L^p-modules

Main results

Preliminaries

Hölder Duality

 $M_n^p(\mathbb{C})$ is the algebra of $d \times d$ complex valued matrices equipped with the *p*-operator norm:

$$M_n^p(\mathbb{C}) = \mathcal{L}(\ell_n^p)$$

For $a \in M_n^p(\mathbb{C})$ we defined $||a||_{p \to p} := \max_{||\xi||_p \le 1} ||a\xi||_p$. If $a = (a_{j,k})_{j,k=1}^n$, then $||a||_{1 \to 1} = \max_{j \in I} \sum_{k=1}^n |a_{j,k}|_p$.

$$||a||_{1\to 1} = \max_{k\in\{1,\dots,n\}} \sum_{j=1}^{n} |a_{j,k}|,$$

$$\|a\|_{2\to 2} = \max_{\lambda \in \sigma(\bar{a}^T a)} \sqrt{|\lambda|},$$

$$||a||_{\infty \to \infty} = \max_{j \in \{1,...,n\}} \sum_{k=1}^{n} |a_{j,k}|.$$

Otherwise, for a general matrix a, the value $||a||_{p \to p}$ is NP-hard to compute.

C*-like L^p-modules Main results

Classic Hölder Duality

For $p\in [1,\infty]$ we denote p' its Hölder conjugate. That is,

$$\frac{1}{p} + \frac{1}{p'} = 1.$$

Let (Ω, μ) be a measure space and consider the dual pairing $\langle -, - \rangle_p \colon L^{p'}(\mu) \times L^p(\mu) \to \mathbb{C}$ given by

$$\langle \eta, \xi \rangle_p = \int_\Omega \eta \xi d\mu.$$

This defines $\Phi \colon L^{p'}(\mu) \to L^p(\mu)'$ by $[\Phi(\eta)](\xi) = \langle \eta, \xi \rangle_p$.

Theorem (Classic Hölder Duality)

 Φ is an isometric isomorphism from $L^{p'}(\mu)$ to $L^p(\mu)'$ whenever

- $p \in (1,\infty).$
- **2** p = 1 and μ is sigma-finite,

• $p = \infty$ and μ is the counting measure on $\{1, \ldots, n\}$ for $n \in \mathbb{Z}_{\geq 1}$.

Hölder Duality in finite dimension

 $\ell_n^{p'}$ is isometrically isomorphic to $(\ell_n^p)'$ via the map $\Phi\colon \ell_n^{p'}\to (\ell_n^p)'$

C*-like L^p-modules

Main results

$$[\Phi(\eta)](\xi) = \sum_{j=1}^n \eta(j)\xi(j) \in \mathbb{C}.$$

This can be reinterpreted through a 'p-operator space' perspective:

$$\ell_n^p \cong \mathcal{L}(\ell_1^p, \ell_n^p) = M_{n,1}^p(\mathbb{C}) \quad \ell_n^{p'} \cong \mathcal{L}(\ell_n^p, \ell_1^p) = M_{1,n}^p(\mathbb{C}).$$

The pairing is now multiplication of a $1 \times n$ -matrix by a $n \times 1$ -matrix:

$$(\eta \mid \xi) = \begin{bmatrix} \eta(1) & \dots & \eta(n) \end{bmatrix} \begin{bmatrix} \xi(1) \\ \vdots \\ \xi(n) \end{bmatrix} = \sum_{j=1}^d \eta(j)\xi(j).$$

Furthermore, Hölder duality gives

$$\|\xi\|_p = \max\{|(\eta \mid \xi)| \colon \eta \in \operatorname{Ba}(\ell_n^{p'})\}, \ \|\eta\|_{p'} = \max\{|(\eta \mid \xi)| \colon \xi \in \operatorname{Ba}(\ell_n^p)\}.$$

Definition

Let (Ω_0, μ_0) and (Ω_1, μ_1) be measure spaces, let $p \in [1, \infty]$, and let $A \subseteq \mathcal{L}(L^p(\mu_0))$ be a closed subalgebra. An L^p -module over A is a pair (X, Y) such that $X \subseteq \mathcal{L}(L^p(\mu_0), L^p(\mu_1))$ and $Y \subseteq \mathcal{L}(L^p(\mu_1), L^p(\mu_0))$ are closed subspaces s.t.

- $xa \in \mathsf{X} \text{ for all } x \in \mathsf{X}, \ a \in A,$
- **2** $ay \in Y$ for all $y \in Y$, $a \in A$.
- $yx \in A$ for all $x \in X$, $y \in Y$,

Condition \bullet gives a pairing $(- | -)_A : \mathsf{Y} \times \mathsf{X} \to A$ defined by

$$(y \mid x)_A = yx \in A.$$

Definition

We say that the module (X, Y) is *C*-like* if both the norms in X and Y are recovered by the pairing, that is for every $x \in X$ and $y \in Y$ we have

●
$$||x|| = \sup\{||(y | x)_A||: y \in Ba(Y)\},$$

$$||y|| = \sup\{||(y | x)_A|| : x \in Ba(X)\}.$$

C*-like L^p-modules Main results

Examples

- Let X be a right Hilbert module over a C*-algebra A. Then (X, \widetilde{X}) is a C*-like L^2 -module over A.
- $(L^{p}(\mu), L^{p'}(\mu))$ is a C*-like L^{p} -module over \mathbb{C} .
- $(L^{p'}(\mu), L^{p}(\mu))$ is a C*-like L^{p} -module over $\mathcal{K}(L^{p}(\mu))$.
- A ⊆ L(L^p(μ)) a closed subalgebra. Then (A, A) is an L^p-module over A, it is C*-like as long as A has a contractive approximate unit.

Definition (Column-Row modules)

Let (X, Y) be an L^p -module over A, let $n \in \mathbb{Z}_{\geq 1} \cup \{\infty\}$, and define

$$M_{n,1}^p(\mathsf{X}) := \ell_n^p \otimes_p \mathsf{X}, \quad M_{1,n}^p(\mathsf{Y}) = \ell_n^{p'} \otimes_p \mathsf{Y}.$$

• $(M_{n,1}^p(X), M_{1,n}^p(Y))$ is an L^p -module over A.

Question: When is $(M_{n,1}^p(X), M_{1,n}^p(Y))$ C*-like?

2 Hölder Duality

Positive Results

Theorem (REU(G)-2025)

Let $p \in [1, \infty)$, let $d, n \in \mathbb{Z}_{\geq 1}$, and ley $A \subseteq M_d^p(\mathbb{C})$ a subalegbra. Then $(M_{n,1}^p(A), M_{1,n}^p(A))$ is C*-like whenever

- $A = M^p_d(\mathbb{C}).$
- A is any block diagonal subalgebra of $M^p_d(\mathbb{C})$.

Comments:

- **9** Both instances are likely to hold as well when $n = \infty$.
- What happens for $(L^p(\mu) \otimes_p A, L^{p'}(\mu) \otimes_p A)$ when µ is a more general measure?
- **③** Observe that in both cases, $id_d \in A$. Is this a sufficient condition?

C*-like L^p-modules Main results

Counter Examples

Consider
$$A \subseteq M_2^p(\mathbb{C})$$
 defined by $A = \left\{ \begin{bmatrix} 0 & \lambda \\ 0 & 0 \end{bmatrix} : z \in \mathbb{C} \right\}$. A is simply \mathbb{C} with trivial multiplication, so $(M_{n,1}^p(A), M_{1,n}^p(A))$ has 0 pairing.
Hence, $(M_{n,1}^p(A), M_{1,n}^p(A))$ cannot be C*-like. Note that $\mathrm{id}_2 \notin A$.

The example above is likely generalizable to any nilpotent subalgebra of $M^p_d(\mathbb{C}).$

Let
$$A = \left\{ u \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} u \colon \lambda_1, \lambda_2 \in \mathbb{C} \right\}$$
, where $u = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.
Then $(M_{n,1}^1(A), M_{1,n}^1(A))$ is not C*-like, even though $\mathrm{id}_2 \in A$.

We still don't know whether this last example is C*-like for $p \neq 1, 2$.

Thank you! Questions?

Preliminaries C*-like l^p -modules Main results $(p \to q)$ -operator norms in \mathbb{C}^d : Known cases

 $M^{p\to q}_d(\mathbb{C})$ is the algebra of $d\times d$ complex valued matrices equipped with the $(p\to q)\text{-operator norm:}$

$$M_d^{p \to q}(\mathbb{C}) = \mathcal{L}(\ell_d^p, \ell_d^q)$$

For
$$a \in M_d^{p \to q}(\mathbb{C})$$
 we defined $||a||_{p \to q} := \max_{\|\xi\|_{p_1} \le 1} ||a\xi||_q$.
For $a = (a_{j,k})_{j,k=1}^d$:
 $||a||_{1 \to 2} = \max_k ||(a_{1,k}, \dots, a_{d,k})||_2$,

$$||a||_{1\to\infty} = \max_k ||(a_{1,k},\ldots,a_{d,k})||_{\infty},$$

$$||a||_{2\to\infty} = \max_{j} ||(a_{j,1},\ldots,a_{j,d})||_{\infty}.$$

However, the computability of $\|a\|_{2\to 1}$, $\|a\|_{\infty\to 1}$, and $\|a\|_{\infty\to 2}$ is NP-hard.