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Abstract

Although ultraproducts are probably most associated with logic, the definition is purely set-theoretic.
Here, we’ll give this definition from scratch (this includes defining what an ultrafilter is) and explain how
to modify it to get an ultraproduct construction for Banach spaces.

1 A Brief Review on Filters and Ultrafilters

Definition 1.1. A filter on a set X is F ⊆ P(X) such that

1. X ∈ F .

2. ∅ 6∈ F .

3. If A ∈ F and B is such that A ⊆ B, then B ∈ F .

4. If A and B are both in F , then A ∩B ∈ F .

Example 1.2. Let X be any set. Below we have three examples of filters on X.

(i) The trivial filter on X is X itself.

(ii) Let x ∈ X. The principal filter generated by x is Fx = {A ⊆ X : x ∈ A}.

(iii) If X has infinite cardinality, the cofinite filter on X is F := {A ⊆ X : X \A is finite}

Definition 1.3. Let F be a filter on a set X. We say that F is an ultrafilter if for any A ⊆ X, either
A ∈ F or X \A ∈ F .

Example 1.4. Let X be any set and x ∈ X. The filter Fx defined above is an ultrafilter.

Lemma 1.5. Every filter is contained in an ultrafilter and maximal filters are ultrafilters.

Proof. This is a trivial application of Zorn’s lemma. �

2 Ultraproducts

Definition 2.1. Let X be a set and (Ex)x∈X be an arbitrary collection of non-empty sets indexed by X.
Let U be an ultrafilter on X. We define an equivalence relation ≡U on

∏
x∈X Ex by

(ξx) ≡U (ηx) ⇐⇒ {x ∈ X : ξx = ηx} ∈ U

The set theoretic ultraproduct of (Ex)x∈X with respect to U is
∏
x∈X Ex/ ≡U . This is sometimes

denoted as
∏
x∈X Ex/U or simply by

∏
U Ex. When all the Ex are equal to a set E, we get the set

theoretic ultrapower, usually denoted by EX/U .
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Example 2.2. If x0 ∈ X, then
∏
Fx0

Ex and Ex0 are isomorphic as sets.

In the above construction, when each set Ex is a Banach space, we do not always get a Banach space when
constructing the set theoretic ultraproduct. We need to modify the construction above to always get a
Banach space.

Definition 2.3. Let X be a set and E a topological space. If U is an ultrafilter on X, we define the
ultralimit of (ξx)x∈X , denoted by limU ξx, as follows

lim
U
ξx = ξ ∈ E ⇐⇒ {x ∈ X : ξx ∈ A} ∈ U for any open neighborhood A of ξ

Theorem 2.4. If E is a compact Hausdorff space, then for each sequence (ξx)x∈X , the limit limU ξx exists
and it’s unique.

Proof. Follows from standard point-set topology arguments. �

For a set X, let (Ex)x∈X be a family of non-empty Banach spaces. We define a new Banach space

`∞(X,Ex) := {(ξx) ∈
∏
x∈X

Ex : ‖(ξx)‖∞ := sup
x∈X
‖ξx‖ <∞}

with addition and scalar multiplication given componentwise. If U is an ultrafilter in X, let

NU = {(ξx) ∈ `∞(X,Ex) : lim
U
‖ξx‖ = 0}

One checks that NU is a closed linear subspace of `∞(X,Ex)

Definition 2.5. For a set X, let (Ex)x∈X be a family of non-empty Banach spaces. Define

(Ex)U := `∞(X,Ex)/NU

The set (Ex)U is called the Banach space ultraproduct of (Ex)x∈X with respect to U . The equivalence
class of an element (ξx) ∈ `∞(X,Ex) is denoted by (ξx)U .

The set (Ex)U is a Banach space when equipped with the usual quotient norm:

‖(ξx)U‖ := inf
(ηx)∈NU

‖(ξx − ηx)‖∞

Moreover, the following result gives a simpler way to compute the norm on (Ex)U :

Lemma 2.6.
‖(ξx)U‖ = lim

U
‖ξx‖

Proof. Notice that for (ξx) ∈ `∞(X,Ex), we must have supx∈X ‖ξx‖ <∞ and therefore Theorem 2.4 implies
that limU ‖ξx‖ exists. The rest is an elementary verification. �

Example 2.7. If x0 ∈ X, then (Ex)Fx0
and Ex0 are isometrically isomorphic.

As before, when all the Banach spaces Ex are equal to E, we get the Banach space ultrapower, which
we still denote by EX/U . There is an isometric embedding Φ : E → EX/U defined by

Φ(ξ) = (ξx)U

where each ξx := ξ. Banach space ultrapowers are only interesting in the infinite-dimensional case. Indeed,
if E is finite dimensional, the map Φ : E → EX/U is an isometric isomorphism. To check this, it suffices
to show that Φ is surjective, so let’s take any (ξx)U in EX/U . Since M := supx∈X ‖ξx‖ < ∞, then (ξx) is
in {ξ ∈ E : ‖ξ‖ ≤ M}, which is a compact set because E is finite dimensional. Thus, by Theorem 2.4, the
limit limU ξx exists and its unique. Call the limit ξ. Clearly limU (ξx − ξ) = 0 and therefore (ξx)U = Φ(ξ).
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Theorem 2.8. The following classes of Banach spaces are closed under Banach space ultraproducts:

(1) Banach algebras

(2) C∗-algebras

(3) C(K) spaces where K is a compact Hausdorff space.

(4) Lp(µ) spaces for 1 ≤ p <∞

Proof. To prove (1) one checks that the natural multiplication

(ξx)U (ηx)U := (ξxηx)U

is well defined in (Ex)U . Then, it follows that

‖(ξx)U (ηx)U‖ = lim
U
‖ξxηx‖ ≤ lim

U
‖ξx‖‖ηx‖ = ‖(ξx)U‖‖(ηx)U‖

For (2), one checks that the natural involution

(ξx)∗U := (ξ∗x)U

is well defined, and then notice that

‖(ξx)U (ξx)∗U‖ = lim
U
‖ξxξ∗x‖ = lim

U
‖ξx‖2 = ‖(ξx)U‖2.

Now, (3) follows because C(K)-spaces are commutative C∗-algebras and therefore the ultraproduct will also
be a commutative C∗-algebra, so Gelfand-Naimark gives that the ultraproduct is also a C(K) space. Finally,
(4) requires the representation theorem for Lp spaces, which says that a Banach lattice with the property
that ‖x+ y‖p = ‖x‖p + ‖y‖p whenever x ∧ y = 0 is an Lp(ν) space for some measure ν. �

Having introduced the ultraproduct of Banach spaces, it makes sense to to talk about the ultraproduct of
operators between Banach spaces. Let (Ex)x∈X and (Fx)x∈X be families of Banach spaces indexed by the
same set X. Suppose that for each x ∈ X we have ax ∈ L(Ex, Fx) and that

sup
x∈X
‖ax‖ <∞

Then, if U is an ultrafilter, we define a map (ax)U : (Ex)U → (Fx)U by

(ax)U (ξx)U = (axξx)U

One checks that if limU ‖ξx‖ = 0, then limU ‖axξx‖ = 0, so the definition above is well defined. Furthermore,
one has that (ax)U ∈ L

(
(Ex)U , (Fx)U

)
.

Corollary 2.9. For 1 ≤ p < ∞, we have that Lp-operator algebras are closed under Banach space ultra-
products.

Sketch of Proof. If (Lp(µx))x∈X is a family of Lp spaces indexed by X and (Ax)x∈X is a family such that
each Ax is a norm-closed subalgebra of L(Lp(µx)), then one checks that for any ultrafilter U , the algebra

(Ax)U is a norm-closed subalgebra of
(
L(Lp(µx))

)
U

. Having the definition of ultraproduct of operators, we

can check that (
L(Lp(µx))

)
U

= L
((
Lp(µx)

)
U

)
So the result follows from Theorem 2.8, which assures that

(
Lp(µx)

)
U is an Lp space. “�”
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