Banach Space Ultraproducts.

Alonso Delfín
University of Oregon.

December 5, 2019

Abstract

Although ultraproducts are probably most associated with logic, the definition is purely set-theoretic. Here, we'll give this definition from scratch (this includes defining what an ultrafilter is) and explain how to modify it to get an ultraproduct construction for Banach spaces.

1 A Brief Review on Filters and Ultrafilters

Definition 1.1. A filter on a set X is $\mathcal{F} \subseteq \mathcal{P}(X)$ such that

1. $X \in \mathcal{F}$.
2. $\varnothing \notin \mathcal{F}$.
3. If $A \in \mathcal{F}$ and B is such that $A \subseteq B$, then $B \in \mathcal{F}$.
4. If A and B are both in \mathcal{F}, then $A \cap B \in \mathcal{F}$.

Example 1.2. Let X be any set. Below we have three examples of filters on X.
(i) The trivial filter on X is X itself.
(ii) Let $x \in X$. The principal filter generated by x is $\mathcal{F}_{x}=\{A \subseteq X: x \in A\}$.
(iii) If X has infinite cardinality, the cofinite filter on X is $\mathcal{F}:=\{A \subseteq X: X \backslash A$ is finite $\}$

Definition 1.3. Let \mathcal{F} be a filter on a set X. We say that \mathcal{F} is an ultrafilter if for any $A \subseteq X$, either $A \in \mathcal{F}$ or $X \backslash A \in \mathcal{F}$.
Example 1.4. Let X be any set and $x \in X$. The filter \mathcal{F}_{x} defined above is an ultrafilter.
Lemma 1.5. Every filter is contained in an ultrafilter and maximal filters are ultrafilters.
Proof. This is a trivial application of Zorn's lemma.

2 Ultraproducts

Definition 2.1. Let X be a set and $\left(E_{x}\right)_{x \in X}$ be an arbitrary collection of non-empty sets indexed by X. Let \mathcal{U} be an ultrafilter on X. We define an equivalence relation $\equiv \mathcal{U}$ on $\prod_{x \in X} E_{x}$ by

$$
\left(\xi_{x}\right) \equiv \mathcal{U}\left(\eta_{x}\right) \Longleftrightarrow\left\{x \in X: \xi_{x}=\eta_{x}\right\} \in \mathcal{U}
$$

The set theoretic ultraproduct of $\left(E_{x}\right)_{x \in X}$ with respect to \mathcal{U} is $\prod_{x \in X} E_{x} / \equiv \mathcal{U}$. This is sometimes denoted as $\prod_{x \in X} E_{x} / \mathcal{U}$ or simply by $\prod_{\mathcal{U}} E_{x}$. When all the E_{x} are equal to a set E, we get the set theoretic ultrapower, usually denoted by E^{X} / \mathcal{U}.

Example 2.2. If $x_{0} \in X$, then $\prod_{\mathcal{F}_{x_{0}}} E_{x}$ and $E_{x_{0}}$ are isomorphic as sets.
In the above construction, when each set E_{x} is a Banach space, we do not always get a Banach space when constructing the set theoretic ultraproduct. We need to modify the construction above to always get a Banach space.
Definition 2.3. Let X be a set and E a topological space. If \mathcal{U} is an ultrafilter on X, we define the ultralimit of $\left(\xi_{x}\right)_{x \in X}$, denoted by $\lim _{\mathcal{U}} \xi_{x}$, as follows

$$
\lim _{\mathcal{U}} \xi_{x}=\xi \in E \Longleftrightarrow\left\{x \in X: \xi_{x} \in A\right\} \in \mathcal{U} \text { for any open neighborhood } A \text { of } \xi
$$

Theorem 2.4. If E is a compact Hausdorff space, then for each sequence $\left(\xi_{x}\right)_{x \in X}$, the limit $\lim _{\mathcal{U}} \xi_{x}$ exists and it's unique.

Proof. Follows from standard point-set topology arguments.
For a set X, let $\left(E_{x}\right)_{x \in X}$ be a family of non-empty Banach spaces. We define a new Banach space

$$
\ell^{\infty}\left(X, E_{x}\right):=\left\{\left(\xi_{x}\right) \in \prod_{x \in X} E_{x}:\left\|\left(\xi_{x}\right)\right\|_{\infty}:=\sup _{x \in X}\left\|\xi_{x}\right\|<\infty\right\}
$$

with addition and scalar multiplication given componentwise. If \mathcal{U} is an ultrafilter in X, let

$$
N_{\mathcal{U}}=\left\{\left(\xi_{x}\right) \in \ell^{\infty}\left(X, E_{x}\right): \lim _{\mathcal{U}}\left\|\xi_{x}\right\|=0\right\}
$$

One checks that $N_{\mathcal{U}}$ is a closed linear subspace of $\ell^{\infty}\left(X, E_{x}\right)$
Definition 2.5. For a set X, let $\left(E_{x}\right)_{x \in X}$ be a family of non-empty Banach spaces. Define

$$
\left(E_{x}\right)_{\mathcal{U}}:=\ell^{\infty}\left(X, E_{x}\right) / N_{\mathcal{U}}
$$

The set $\left(E_{x}\right)_{\mathcal{U}}$ is called the Banach space ultraproduct of $\left(E_{x}\right)_{x \in X}$ with respect to \mathcal{U}. The equivalence class of an element $\left(\xi_{x}\right) \in \ell^{\infty}\left(X, E_{x}\right)$ is denoted by $\left(\xi_{x}\right)_{\mathcal{U}}$.

The set $\left(E_{x}\right)_{\mathcal{U}}$ is a Banach space when equipped with the usual quotient norm:

$$
\left\|\left(\xi_{x}\right)_{\mathcal{U}}\right\|:=\inf _{\left(\eta_{x}\right) \in N_{\mathcal{U}}}\left\|\left(\xi_{x}-\eta_{x}\right)\right\|_{\infty}
$$

Moreover, the following result gives a simpler way to compute the norm on $\left(E_{x}\right)_{\mathcal{U}}$:
Lemma 2.6.

$$
\left\|\left(\xi_{x}\right)_{\mathcal{U}}\right\|=\lim _{\mathcal{U}}\left\|\xi_{x}\right\|
$$

Proof. Notice that for $\left(\xi_{x}\right) \in \ell^{\infty}\left(X, E_{x}\right)$, we must have $\sup _{x \in X}\left\|\xi_{x}\right\|<\infty$ and therefore Theorem 2.4 implies that $\lim _{\mathcal{U}}\left\|\xi_{x}\right\|$ exists. The rest is an elementary verification.

Example 2.7. If $x_{0} \in X$, then $\left(E_{x}\right)_{\mathcal{F}_{x_{0}}}$ and $E_{x_{0}}$ are isometrically isomorphic.
As before, when all the Banach spaces E_{x} are equal to E, we get the Banach space ultrapower, which we still denote by E^{X} / \mathcal{U}. There is an isometric embedding $\Phi: E \rightarrow E^{X} / \mathcal{U}$ defined by

$$
\Phi(\xi)=\left(\xi_{x}\right)_{\mathcal{U}}
$$

where each $\xi_{x}:=\xi$. Banach space ultrapowers are only interesting in the infinite-dimensional case. Indeed, if E is finite dimensional, the map $\Phi: E \rightarrow E^{X} / \mathcal{U}$ is an isometric isomorphism. To check this, it suffices to show that Φ is surjective, so let's take any $\left(\xi_{x}\right)_{\mathcal{U}}$ in E^{X} / \mathcal{U}. Since $M:=\sup _{x \in X}\left\|\xi_{x}\right\|<\infty$, then $\left(\xi_{x}\right)$ is in $\{\xi \in E:\|\xi\| \leq M\}$, which is a compact set because E is finite dimensional. Thus, by Theorem 2.4 , the $\operatorname{limit} \lim _{\mathcal{U}} \xi_{x}$ exists and its unique. Call the limit ξ. Clearly $\lim _{\mathcal{U}}\left(\xi_{x}-\xi\right)=0$ and therefore $\left(\xi_{x}\right)_{\mathcal{U}}=\Phi(\xi)$.

Theorem 2.8. The following classes of Banach spaces are closed under Banach space ultraproducts:
(1) Banach algebras
(2) C^{*}-algebras
(3) $C(K)$ spaces where K is a compact Hausdorff space.
(4) $L^{p}(\mu)$ spaces for $1 \leq p<\infty$

Proof. To prove (1) one checks that the natural multiplication

$$
\left(\xi_{x}\right)_{\mathcal{U}}\left(\eta_{x}\right)_{\mathcal{U}}:=\left(\xi_{x} \eta_{x}\right)_{\mathcal{U}}
$$

is well defined in $\left(E_{x}\right)_{\mathcal{U}}$. Then, it follows that

$$
\left\|\left(\xi_{x}\right)_{\mathcal{U}}\left(\eta_{x}\right)_{\mathcal{U}}\right\|=\lim _{\mathcal{U}}\left\|\xi_{x} \eta_{x}\right\| \leq \lim _{\mathcal{U}}\left\|\xi_{x}\right\|\left\|\eta_{x}\right\|=\left\|\left(\xi_{x}\right)_{\mathcal{U}}\right\|\left\|\left(\eta_{x}\right)_{\mathcal{U}}\right\|
$$

For (2), one checks that the natural involution

$$
\left(\xi_{x}\right)_{\mathcal{U}}^{*}:=\left(\xi_{x}^{*}\right)_{\mathcal{U}}
$$

is well defined, and then notice that

$$
\left\|\left(\xi_{x}\right)_{\mathcal{U}}\left(\xi_{x}\right)_{\mathcal{U}}^{*}\right\|=\lim _{\mathcal{U}}\left\|\xi_{x} \xi_{x}^{*}\right\|=\lim _{\mathcal{U}}\left\|\xi_{x}\right\|^{2}=\left\|\left(\xi_{x}\right)_{\mathcal{U}}\right\|^{2}
$$

Now, (3) follows because $C(K)$-spaces are commutative C^{*}-algebras and therefore the ultraproduct will also be a commutative C^{*}-algebra, so Gelfand-Naimark gives that the ultraproduct is also a $C(K)$ space. Finally, (4) requires the representation theorem for L^{p} spaces, which says that a Banach lattice with the property that $\|x+y\|^{p}=\|x\|^{p}+\|y\|^{p}$ whenever $x \wedge y=0$ is an $L^{p}(\nu)$ space for some measure ν.
Having introduced the ultraproduct of Banach spaces, it makes sense to to talk about the ultraproduct of operators between Banach spaces. Let $\left(E_{x}\right)_{x \in X}$ and $\left(F_{x}\right)_{x \in X}$ be families of Banach spaces indexed by the same set X. Suppose that for each $x \in X$ we have $a_{x} \in \mathcal{L}\left(E_{x}, F_{x}\right)$ and that

$$
\sup _{x \in X}\left\|a_{x}\right\|<\infty
$$

Then, if \mathcal{U} is an ultrafilter, we define a map $\left(a_{x}\right)_{\mathcal{U}}:\left(E_{x}\right)_{\mathcal{U}} \rightarrow\left(F_{x}\right)_{\mathcal{U}}$ by

$$
\left(a_{x}\right)_{\mathcal{U}}\left(\xi_{x}\right)_{\mathcal{U}}=\left(a_{x} \xi_{x}\right)_{\mathcal{U}}
$$

One checks that if $\lim _{\mathcal{U}}\left\|\xi_{x}\right\|=0$, then $\lim _{\mathcal{U}}\left\|a_{x} \xi_{x}\right\|=0$, so the definition above is well defined. Furthermore, one has that $\left(a_{x}\right)_{\mathcal{U}} \in \mathcal{L}\left(\left(E_{x}\right)_{\mathcal{U}},\left(F_{x}\right)_{\mathcal{U}}\right)$.
Corollary 2.9. For $1 \leq p<\infty$, we have that L^{p}-operator algebras are closed under Banach space ultraproducts.

Sketch of Proof. If $\left(L^{p}\left(\mu_{x}\right)\right)_{x \in X}$ is a family of L^{p} spaces indexed by X and $\left(A_{x}\right)_{x \in X}$ is a family such that each A_{x} is a norm-closed subalgebra of $\mathcal{L}\left(L^{p}\left(\mu_{x}\right)\right)$, then one checks that for any ultrafilter \mathcal{U}, the algebra $\left(A_{x}\right) \mathcal{U}$ is a norm-closed subalgebra of $\left(\mathcal{L}\left(L^{p}\left(\mu_{x}\right)\right)\right)_{\mathcal{U}}$. Having the definition of ultraproduct of operators, we can check that

$$
\left(\mathcal{L}\left(L^{p}\left(\mu_{x}\right)\right)\right)_{\mathcal{U}}=\mathcal{L}\left(\left(L^{p}\left(\mu_{x}\right)\right)_{\mathcal{U}}\right)
$$

So the result follows from Theorem 2.8 , which assures that $\left(L^{p}\left(\mu_{x}\right)\right)_{\mathcal{U}}$ is an L^{p} space.

Department of Mathematics, University of Oregon, Eugene OR 97403-1222, USA.
E-mail address: alonsod@uoregon.edu

