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1.1 Theorems and Definitions.

Definition. Suppose M is a topological space. We say that M is a topo-
logical manifold of dimension n or a topological n-manifold if it has
the following properties:

e M is a Hausdorff space, i.e. for every pair of distinct points p,q € M,
there are disjoint open subsets U,V C M such that p € U and q € V.

e M is second-countable, i.e. there exists a countable basis for the topol-
ogy of M.

e M is locally Euclidean of dimension n, i.e. each point of M has a
neighborhood that is homeomorphic to an open subset of R™. A

Definition. Let M be a topological n-manifold. A coordinate chart (or
just a chart) on M is a pair (U, ) where U is an open subset of M and
¢ : U — ¢(U) is a homeomorphism from U to an open subset p(U) C R™.
Given a chart (U, ), we call the set U a coordinate domain. The map ¢ is
1 n

called a (local) coordinate map, and the component functions =", ..., x
of ¢, defined by

o(p) = (z'(p),...,2"(p)),

are called local coordinates on U. A

Definition. Let M be a topological n-manifold. If (U, ¢) and (V,1)) are
two charts such that U NV # &, the composite map

¢ogpfl:gp(UﬂV)—>¢(UﬂV)

is called the transition map from ¢ to 1.

Two charts (U, ¢) and (V1)) are said to be smoothly compatible if either
UNV = @ or the transition map v o ¢! is a diffeomorphism.

An atlas for M is a collection of charts whose domains cover M. An atlas
A is called a smooth atlas if any two charts in A are smoothly compatible
with each other. A smooth atlas A on M is maximal if it is not properly
contained in any larger smooth atlas.

A smooth manifold is a pair (M, .A) where M is a topological manifold
and A is a maximal smooth atlas. A



Definition. Suppose M is a smooth n-manifold, k is a nonnegative integer,
and f : M — RF is any function. We say that f is a smooth function if
for every p € M, there exists a smooth chart (U, ) for M whose domain
contains p and such that the composite function f o ¢~! is smooth on the
open subset ¢~ 1(U) C R™.

When k& = 1, we denote by C°>°(M) the space of all real valued smooth
functions on M. A

Definition. Suppose M is a smooth n-manifold and p € M. A derivation
at p is a linear map w : C>*°(M) — R such that

w(f-g) =w(f)g(p)+ f(p)w(g)

for any f,g € C>°(M). We denote the space of all derivations at p by T,M,
this is the tangent space to M at point p. A

Theorem. Suppose M is a smooth n-manifold and p € M. Let (U, ) be
a chart such that p € U with local coordinates (z',...,2™). Then, the map

8?& b C>®(M) — R given by
o _Ofoe™)

is a derivation at p. Furthermore, T,M = R" and any derivation at p has

the form
>y
P ot

p

for some a',...,a" € R.

Definition. Let M, N be smooth manifolds, and let F' : M — N be any
map. We say that F'is a smooth map if for every p € M, there exist smooth
charts (U, ¢) containing p and (V,1) containing F'(p) such that F(U) C V
and the composite map 1) o F o ¢~ tis smooth from o (U) to (V). A

Definition. Let M, N be smooth manifolds. If F': M — N is smooth and
p € M, we define the differential dF(p) : TyM — Tp(, N as

[dF (p)(w)](g) = w(g o F)
for any w € T,M and g € C*°(N). A

Lemma. Let M, N and P be smooth manifolds and F' : M — N smooth.
If p e M, then



dF(p)(w) is indeed a derivation at F(p).

dF (p) : TyM — Tp)N is a linear map.

If G : N — P is smooth, then

d(G o F)(p) = dG(F(p)) o dF(p)

dIdM(p) = IdTpM

If F is a diffeomorphism, then dF (p) is an isomorphism and

[dF (p)]~" = dF~(p)

Definition. Let M, N be smooth manifolds and F : M — N a smooth
map. Given g € N, we say that ¢ is a regular value of F' if for every point
p € F71({q}) we have dF(p) : T,M — Tp(, N is a surjective linear map A

Theorem. (Regular Value Theorem) Suppose M is a smooth m-manifold
and N a smooth n-manifold. Let F : M — N be smooth and let ¢ € N be
a reqular value of F. Then, F~'1({q}) is a smooth submanifold of M with
dimension m — n.

Definition. Let M be a topological manifold. A real vector bundle
of rank k£ over M is a topological space E together with a surjective
continuous map 7 : £ — M such that

(i) For each p € M, the fiber E, = 71 ({p}) is a k-dimensional real vector
space.

(ii) For each p € M, there is U C M with p € U and a homeomorphism
®: 7 HU) — U x R¥, called a local trivialization of E over U, such
that

. if 7y : U x R¥ — U is the canonical projection, then ;o ® = 7.

. For each ¢ € U, @‘E : B, = {q} x RF =2 R* is a vector space
q

isomorphism

If M, FE are smooth manifolds, 7 is smooth and the maps ® can be chosen
to be diffeomorphisms, then F is called a smooth vector bundle.

A line bundle over M is a vector bundle of rank 1. A



Definition. A real vector bundle (E,m) of rank k over M is said to be
trivial if there is a global trivialization, that is if there is a homeomorphism
®: FE 5 MxRF If (E,7) is a smooth vector bundle and the global
trivialization is a diffeomorphism, we say that (F, ) is smoothly trivial. A

Definition. Consider a real vector bundle (E,7) of rank k over M. A
section of F is a continuous map o : M — FE such that roo =idy;. A
local section of F is a continuous map o : U — F such that 7 oo = idy
for some open set U C M. If F is a smooth vector bundle and the map o
is smooth, then we get a smooth (local) section. We usually denote the
space of smooth sections of E as I'(E). A

Definition. Consider a real vector bundle (F, ) of rank k over M and U C
M an open subset. A r-tuple of local sections over U, say (o1, ...,0,), is said
to be linearly independent if for each p € U, the r-tuple (o1(p), ..., 0.(p))
is linearly independent in E,. Similarly, (o1,...,0,) is said to span FE if for
each p € U, the r-tuple (o1(p),...,or(p)) span E,.

A local frame for E over U is an ordered k-tuple (o1, ...,0%) of linearly
independent local sections over U that span F; thus (o1(p),...,or(p)) is a
basis for the fiber E, for each p € U. It is called a global frame if U = M.
If F is a smooth vector bundle, a local or global frame is a smooth frame
if each o; is a smooth section. A

Theorem. Every smooth (local) frame for a smooth vector bundle is asso-
ciated with a smooth (local) trivialization in the following way:

o Ifs1,...,s, : U — FE is a frame over U C M, we get a trivialization
O 771 (U) = U xR by

®(z) := (n(x), \N(x),..., \*(x))
where © = N'(2)si(7(x)) € Er(y).-

o Conversely, if ® : 71 (U) — U x R¥ is a trivialization and ey, . .., ey
is the standard basis for R¥, we define sections o; : U — E by

ai(p) == 27 (p. )
Then, s1,...,sE s a frame over U.

Corollary. A smooth vector bundle is smoothly trivial if and only if it admits
a smooth global frame.



Definition. Let M be a smooth n-manifold. We define the tangent bundle
of M, denoted by T'M, as follows

TM = H Tp,M ={(p,w) :w e T,M}
peEM

A

Lemma. Let M be a smooth n-manifold. The tangent bundle T M together
with the natural projection map m: TM — M, is a real smooth vector bundle
of rank n over M.

Definition. Let M be a smooth n-manifold. A vector field is a section
of the tangent bundle T'M. That is, a vector field is a continuous map
X : M — TM so that mo X = id,y. A

Definition. Let M be a smooth n-manifold and (U, %) be any smooth
coordinate chart. We define a map =25 : M — T'M by

oxt *
p)

0z P TP gy

A
Theorem. Let M be a smooth n-manifold and (U, z") be any smooth coor-
dinate chart. Then, (%, ce %) is a local frame for TM over U.

Definition. Let M be a smooth n-manifold and (U, z') be any smooth
coordinate chart. If X : M — T'M is a vector field and p € U, we have

)

The n smotth maps X’ : U — R are called the component functions of
X in the given chart. In this case, we abuse notation and say that X can
be written locally as

X(p) = (p, X"(p) aii

0
X=X"—
oz’
so that X (p) is representing the element X'(p) 8?01- e T,M. A
p

Definition. Let M be a smooth n-manifold. A smooth vector field X on
M can be alternatively defined as a linear map X : C*°(M) — C*>°(M) such
that X (fg) = X(f)g+ fX(g) for any f,g € C*°(M). Thus, if for a smooth



coordinate chart (U, z°) we have X = X* 62“ then for any f € C>°(M), the
function X (f): M — R is given by

0

X(f)(p) ZXZ'(p)axi ,

()

A

Lemma. Let M be a smooth n-manifold. The space of smooth vector fields,
denoted by T'(T'M) is a Lie algebra. That is, for any X,Y € T'(T'M) the Lie
bracket [X,Y]:= XY — Y X is again a smooth vector field.

Lemma. Let M be a smooth n-manifold and X,Y € I'(T'M) with coor-
dinate expressions X = X° 82“Y =Y? 82' in terms of some smooth local

coordinates (z*) for M. Then [X,Y] € T(T'M) has the following coordinate
expression:

0

ox’

Theorem. (Properties of the Lie Bracket). The Lie bracket satisfies the
following identities for all X,Y,Z € T'(TM)

(X, Y] = (X(Y7) - V(X))

e BILINEARITY: For a,b € R,
[aX+bY, Z] = a[X, Z]+b]Y, Z] and [X,aY+bZ] = alX,Y]|+0[X, Z]

o ANTISYMMETRY:
[Xv Y] = _[va}

e JACOBI IDENTITY:

[X, v, Z]} n [Y, Z, X]} v [Z, X, Y]} —0

e for f,g € C(M),

[fX,gY] = folX, Y]+ (fX(9)Y — (9Y(F)X

Definition. Let M be a smooth n-manifold. A Riemannian metric on
M is a family of (positive definite) inner products

g={gp: TyM x T,M — R}penr,
such that, for all smooth vector fields X,Y : M — T'M, the map

p— gp(X(p),Y(p))



defines a smooth function M — R.

Given local coordinates () we have

9i5(p) == gp ( aii (p), aij(p))

Since (%, R %) is a local frame for T'M, we also say that

_ (9 9
95 = 9\ 9zt B

so we may think of g as a smooth positive definite inner product on I'(T'M).
A smooth manifold M together with a given Riemannian metric g is called

a Riemannian manifold and denoted by (M, g). A

Theorem. (Ezistence of Riemannian Metrics). FEvery smooth manifold
with or without boundary admits a Riemannian metric.

Remark. Let o : [a,b] — M be a smooth parametrized curve on a smooth
n-manifold M . At any time ¢ € [a, b], the velocity &(t)of o acts on functions
by

5] = S (f o)1)

If we write the local coordinate representation of o as o (t) = (' (t),...,0"(t)),
then ¢(t) = &'(t) a‘; (A dot always denotes the ordinary derivative with re-
spect to t.) Thus, we think of ¢(t) as an element of Tj,;) M. v

Definition. Let (M, g) be a connected Riemannian manifold and let o :
[a,b] — M be a smooth parametrized curve in M. The length of o is defined
as

b
L) = [ o 61050t
The distance function d, : M x M — R is defined by

dg(p,q) :=inf {L(0) : 0 € C>([0,1],M),0(0) = p,o(1) = ¢q}

Theorem. Let (M,g) be a connected Riemannian manifold. Then,

e (M,dy) is a metric space.



e The topology induced by dy is the same as the original topology on M.

o If d, is complete, then between any two points in M, there exists a
curve that minimizes the distance.

Definition. Let M be a smooth manifold and U = {U, }4ca an open cover
of M indexed by a set A. A smooth partition of unity subordinated to
U is a collection {¢q}aca in C*°(M) such that

e 0 < ¢u(p) <1lforallpe M and all « € A.

o Supp(da) := {p € M : da(p) # 0} C U,

e The family of supports {supp(¢a)}aca is locally finite, meaning that
every point has a neighborhood that intersects supp(¢,,) for only finitely
many values of «

>  daca(p)=1forall pe M.

A

Theorem. (Ezistence of Partitions of Unity). Suppose M is a smooth man-
ifold, and U is any indexed open cover of M. Then there exists a smooth
partition of unity subordinate to U.

Theorem. Suppose M is a smooth manifold, U = {Up}aca is any indexed
open cover of M, and let g, be a Riemannian metric on Uy. If {da}taca is
a smooth partition of unity subordinated to U, then

Z baYa

a€A

18 a Riemannian metric on M.

Definition. Let M be a smooth manifold. A connection on M is a map
V:I'(TM)xT'(TM) - T'(TM) (we put VxY := V(X,Y)) such that

e V is bilinear.
o VixY = fVxY for any X,Y € I'(TM) and f € C*(M).

o VxfY =X(f)Y + fVxY forany X, Y € '(TM) and f € C>(M).



Theorem. Let V be a connection on a smooth manifold M. Then V is
local, that is for X, Y € T'(TM) we have that

o IfU C M is such thatX‘U =0, then (VXY)‘U =0
o IfV C M is such that Y‘v =0, then (VXY)‘V =0

Remark. From now on, the following the convenient notation will be used

9
Opi = o

v

Definition. Since any connection V is local, in local coordinates (U, (x%))
we have
Vo 0y = ;%0

The smooth functions Fijk : U — R are known as Christoffel symbols of
V with respect to the frame (9,1,...,0:n). A

Theorem. Suppose M is a smooth manifold, U = {Uy}aca is any indexed
open cover of M, and let “V be a connection on Uy. If {¢a}aca is a smooth
partition of unity subordinated to U, then

> 9a"V

acA
s a connection on M.
Definition. Let M be a smooth manifold, g a Riemannian metric on M and
V a connection on M. We define g : I'(T'M) x I'(TM) x I'(TM) — C*(M)

by
rg(X,Y,Z) =X (g(Y,2)) —g(VxY,Z) — g(Y,Vx Z)

If ry = 0, we say that V is Riemannian. A

Definition. Let M be a smooth manifold and V a connection on M. We
define the torsion tensor 7' : I'(T'M) x I'(TM) — T'(TM) by

T(X,Y):=VxY —VyX — [X,Y]

If T =0, we say that V is torsion free. A

10



Lemma. Both ry and T are tensorial, that is for any f € C>(M)
ro(fX,Y,Z) = rg(X, fY, Z) = 1y(X,Y, f Z) = fro(X,Y, Z)
T(fX,Y) =T(X, fY) = fT(X,Y)
Corollary. Both ry and T are local.

Lemma. On local coordinates (x%), torsion free is equivalent to Fijk = I‘jik

for alli,j, k.

Theorem. Let M be a smooth manifold and V a connection on M. The
following are equivalent

(i) V is torsion free.

(ii) Given any point p € M, there exist local coordinates centered at p so
that Fijk(p) =0.

Theorem. Let (M,g) be a Riemannian manifold. Then, there exists a
unique connection called the Levi-Civita connection so V is torsion free
and Riemannian.

Definition. Let (M, g) be a Riemannian manifold and V a connection on
M. We define the Christoffel symbols of the second kind as

Fijk = Q(Vall 8xj ) 8:ck)
for local coordinates (z°). A

Lemma. Let (M,g) be a Riemannian manifold and V a connection on M.
Then,
Li* = g"'Tij
where (gk!) is the inverse matriz of (gij)
Remark. From now on, the following the convenient notation will be used

Gij/k = Ok i

Lemma. Torsion free is equivalent to I';;, = T for all i, j, k. Riemannian
connection is equivalent to Uyjr + Tigj = gjr/s

11



Theorem. Let (M,g) be a Riemannian manifold and V the Levi-Civita
connection. Then, the Kozul formula holds, that is

1
Cijr = B (9jk/i + Ginyj — ij/n)

Example. Take M = R" and let X = X?0,:,Y = Y0, be vector fields on
R™. Then, the euclidian connection given by

Y = X (Y0, = X70,,;(Y*")0,

is the Levi-Civita connection for R™. Furthermore, in this case Fijk = 0 for
all 4,5, k. v

Example. Let S C R3 be a surface (i.e. a smooth 2-manifold). If X,V
are vector fields in R? that are tangent to S, then V&Y is not necessarily
tangent to S. However, if for any point p € S, mg : TpR3 — T,S is the
orthogonal projection back to the surface, then mg(V%Y') is tangent to S.

In fact, we have that mg o V€ is the Levi-Civita connection of S. v

Definition. Let (M, g) be a Riemannian manifold and V the Levi-Civita
connection. A smooth curve o : [a,b] — M is a geodesic if

Ve =0
A
Theorem. Let (M, g) be a Riemannian n-manifold and V the Levi-Civita
connection. Consider a smooth curve o : [a,b] — M with local coordinate
representation given by o(t) = (z'(t),...,2"(t)) (thus & = 2'0,:). Then the
geodesic equation above is
B 4> @i Tk =0

j
forallk=1,...,n.
Theorem. Let (M, g) be a Riemannian n-manifold, V the Levi-Civita con-
nection, and o : [a,b] — M a smooth curve. Suppose that M C R™ for
some m and let V¢ be the euclidean connection in R™. Then, if for any
point p € M, myr : T,R™ — T, M s the ortogonal projection back to M, we
have

Vso = (Ved) =y

and therefore o is a geodesic if and only if ¢ L M.

12



Theorem. (Geodesics travel at constant velocity) Let (M, g) be a Rieman-
nian n-manifold, ¥V the Levi-Civita connection, and o : [a,b] — M a

geodesic. Then, %g(d(t),d(t)) i 29(Vso,0) = 0.

Lemma. Let (M,g) be a Riemannian n-manifold, V the Levi-Civita con-
nection, and vy : [a,b] — M a smooth curve. Then, vy is an umparametrized
geodesic iff

Vig = ay
for some smooth function « : [a,b] — R.

Lemma. Let (M,g) be a Riemannian manifold and o : I — M a geodesic.
Then if X > 0 is such taht 6(t) := o(At) is defined, & is also a geodesic.

Definition. Let (M, g) be a Riemannian manifold. M is said to be geodesi-
cally complete if all geodesics extend for infinite time. A

Theorem. Let (M, g) be a Riemannian manifold, V the Levi-Civita con-
nection, and suppose that M is compact. Then, M 1is geodesically complete.

Lemma. Let (M, g) be a Riemannian n-manifold. If p € M and w € T,M.
There exists a unique geodesic oy, : I — M such that

e [0,1]C I

e 0u(0)=p

o 5,(0) =w
Furthermore, if € > 0 and the geodesic o, is defined for |t| < e, then for
A > 0 the curve v = oy, 15 a geodesic defined for |t| < /X and v(t) = 0,(At)

for |t| < e/A.

Remark. Intuitively, the second part of the previous lemma means that
since the speed of a geodesic is constants we an go over its trace within a
prescribed time by adjusting our speed appropriately. v

Definition. Let (M, g) be a Riemannian manifold. If p € M and w € T, M
is non zero, we set

exp,(w) :=oy(1) and  exp,(0) :=p

13



Geometrically, the construction corresponds to laying off (if possible) a

length equal to [lwl|lg, := gp(w,w) along the geodesic that passes trough
p in the direction of v; the point of M thus obtained is denoted by exp,,(w).
A

Theorem. Let (M,g) be a Riemannian manifold. Given p € M there is
€ > 0 such that the map exp, : B:(0) — M is a diffeomorphism. Here
Be(0) = {w € T,M : [Jw|ly, < e}. Furthermore, exp,(tw) = ou(t) and
dexp,(0) : T,M — T,M is the identity map.

Corollary. Let (M,g) be a connected Riemannian manifold. For p € M
and w € TyM, we let q := exp,(w). Then, the curve v : [0,1] — M given by
v(t) := exp,(tw) is the geodesic from p to q of length |[w||g,. Furthermore,
if o is any curve from p to q, then L(o) > L(v), and equality holds iff o is
a reparametrization of v. Also,

dyg(p,q) = llwll,

Theorem. (Hopf Rinow) Let (M, g) be a connected Riemannian manifold.
Then the following statements are equivalent:

(1) (M,dy) is a complete metric space.
(2) M is geodesically complete.

(3) All geodesics through given base point extend for infinite time

Furthermore, any of these equivalent conditions imply that for any two points
p,q € M there exists a geodesic o from p to q such that L(o) = dg(p,q).

Definition. Let M, N be smooth manifolds and F' : M — N a smooth
map. The push forward dF' : TM — TN is defined by

dF (p,w) == (F(p), [dF (p)](w))
The pull back F* : C°(N) — C°(M) is given by
F*(h) :=hoF
for any h € C®(N) A

Definition. Let (M, g™) and (N, ¢") be two Riemannian manifolds, and
F: M — N be a diffeomorphism. Then, F is called a Riemannian isom-
etry, if

gM — F*gN

14



or pointwise
9" (1, 0) = g (AF(p)(u), dF(p)(v))  Vp € M,Vu,v € T,M.

Moreover, a smooth map F': M — N is called a local isometry at p € M
if there is a neighbourhood U C M, p € U, such that F : U — F(U) is a
diffeomorphism satisfying the previous relation. A

Lemma. Let (M,g™) and (N,g") be two Riemannian manifolds. If F :
M — N is a Riemannian isometry, then F': (M,dgu) — (N,dyn) is an
isometry of the underlying metric space. That is, for any p,q € M

dgM (p, (]) = dgN (F(p), F(Q))

Conversely, if F' is an isometry of the underlying metric space and bijective,
then F is a Riemannian isometry.

Definition. A Riemannian manifold (M, g) is said to be homogeneous,
if given any p,q € M there is a Riemannian isometry ® : M — M such that
®(p) = q. A

Theorem. Let (M,g) be homogeneous. Then M is geodesically complete.

Theorem. A Riemannian manifold (M,g) and ® : M — M a Riemannian
isometry. Let F = {p € M : ®(p) = p} the fized point set of . Then F is a
smooth submanifold of M that is totally geodesic. That is, for all geodesics
o such that 0(0) € F, we have o(t) € F for all t.

15



2 Winter 2018: Math 638

2.1 Theorems and Definitions.

Definition. Let (M, g) be a Riemannian manifold and V the Levi-Civita
connection. For XY € I'(T M), we set

R(X,Y):=VxVy —=VyVx —Vixy
Thus, R(X,Y) : D(TM) — D(TM). For X,Y,Z,W € [(TM), we sct

R(X,Y,Z,W) := g(R(X,Y)Z,W)

Lemma. (Curvature Properties)
(i) The map (X,Y,Z) — R(X,Y)Z is multilinear and tensorial.
(1)) R(X,Y)=—-R(Y,X).

(iii) The Bianchi identity holds, that is

R(X,Y)Z +R(Z, X)Y + R(Y,Z)X =0

(iv) R(X,Y) is skew symmetric, that is
g(R(X,Y)Z,W) = —g(Z,R(X,Y)W).
Equivalently R(X,Y,Z, W) = -R(X,Y,W, Z).
(v) R(X,Y,Z,W)=R(Z,W,X,Y).

(vi) The identities above are the only universal curvature identities for the
Levi-Civita connection, all others are consequences of these ones.

Definition. Let (M, g) be a Riemannian n-manifold and V the Levi-Civita
connection. If (U, ) are local coordinates we set

Rijkl = R(az“ a:cj ) axkv azl) = g(R(a:ch 811 )arkv aml)

for all 4,5, k, 0 € {1,...,n}. A

16



Theorem. Let (M,g) be a Riemannian n-manifold

and V the Levi-Civita connection. If (U,x%) are local coordinates around

p € U such that
9ij/k(P) =0
foralli,j k€ {1,...,n}, then
1
Rijri(p) = B (gjl/ik + i/t — i)k — gjk:/il) ()
foralli,j k,le{l,...,n}.
Lemma. (Curvature Symmetries)
(i) Rijr = —Rjinl
(11) Rijii + Riiji + Rjka = 0
(1it) Riju = —Rijik
(iv) Rijui = Ry

(v) These are the only universal curvature symmetries. The rest are al-
gebraic consequences of these, that is, given a collection Ay sat-
isfying (1)-(iv) above, there exists a Riemannian metric g such that

Rijra(p) = Asjri-

Definition. Let (M, g) be a Riemannian n-manifold. The scalar curva-

ture is given by
7= g"¢"" Riju
where (") z
Definition. Let (M, g) be a Riemannian manifold. We define
p(X,)Y) =tr(Z— R(Z,X)Y)
The Ricci tensor is then given on local coordinates (z*) by

Pij = p(am“ aw) = gklRiklj

Remark. Notice that

trg(p) = 9" pij = gV g" Rigj = 7

17

is the inverse matrix of (g;;). The Gaussian curvature is 3.

A



Theorem. ( Myers) Let (M,g) be a geodesically complete and connected
Riemannian manifold. Suppose there exist € > 0 such that p(X,X) >
eg(X, X) for all vector fields X (i.e. the Ricci tensor is uniformly posi-
tive). Then M is compact and the fundamental group w1 M s finite.

Definition. Suppose M is a hypersurface, that is an n-manifold embedded

in R"*! with Riemannian metric given by the induced metric. Take local

coordinates (u',...,u") and local parametrization F : U — R™

Fu,.. . u™) = (2}, ... 2"
such that rank(g—ﬁ;) = n. The first fundamental form is the matrix given

by
gij = 6ulF . (9qu-

The second fundamental form is defined as
L(X,)Y)=(VY) N

where X,Y € I'(T M), V€ is the euclidean connection in R"*! and N is the
unit normal to M (two choices of orientation £N) A

Lemma. The second fundamental form is symmetric and tensorial. That
is, for any X,Y € I'(TM) and f € C>*°(M) we have

o L(X,Y) = L(Y,X)
e L(fX,Y)=L(X, fY)= fL(X,Y)
Furthermore, if Z,2W € T'(T'M), then

R(X,Y,Z,W) = L(X,W)L(Y, Z) — L(X, Z)L(Y, W)

Example. Suppose S C R3 is a surface with local parametrization given
by T'(u1,u2). Then, the first fundamental form is given by

gij = 8uZT . 8UJT
The second fundamental form is given by

L’L] = &iu]T : N7
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where N is the unit vector normal to 0,,7 and 9,,7. Further, thanks to
Gauss’s Teorema Egregium, it follows that the Gaussian curvature is

_ det(Lij) _ Li1Los — (L12)2
det(gij) 911922 — (g12)?

Theorem. Let (M,g) be a Riemannian n-manifold. Then,

vol(BM (p)) 7(p)
Vl(BE(0)) ~ ' 6(n+ 2)7“2 +O(")

Definition. Let (M, g) be a Riemannian manifold. If {X,Y} is the basis
of a 2-plane IT in I'(T'M), we define the sectional curvature by

R(II) :— R(X,YY, X) _ g(R(X,Y)Y, X)
)= S X9(¥.Y) — (V) ~ (X, X)g(Y,Y) — (X, V)2

This definition is independent of the chosen basis, it only depends on II C
NTM). A

Theorem. Let (M,g) be a (pseudo)Riemannian n-manifold with constant
sectional curvature, that is R(I1) = ¢ for any 2-plane I1 C I'(T'M). Then,

e ifc=0, (M,g) is locally isometric to R™ with flat metric.

e ifc>0, (M,g) is locally isometric to the sphere of radius ﬁ

n 1 ,_ n+l . 2_}
S <\/E> = {xeR ;||| =
1

e ifc <0, (M,qg) is locally isometric to the pseudo-sphere of radius e

1 . 1
S"(\/jc> = {mER +1:m%+...+xi—x%+lzc}

Lemma. Let (M,g) be a (pseudo)Riemannian n-manifold with constant
sectional curvature c. If {e1,...,en} ts an orthonormal basis for T,M , then

R(ei, ej,ex,er) = ¢ (6adjn — dirdjr)

That is, the only non zero curvatures are R(e;, ej,€j,¢e;) = ¢ and R(e;j, ej,€;,e5) =
—c and the induced symmetries.
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Definition. Let (M, g) be a Riemannian manifold and V the Levi-Civita
connection. For X € I'(T'M), we define the Jacobi operator J(X) :
T(TM) — T(TM) by

J(X)Y = R(Y, X)X

A
Lemma. o J(X)X =0 for any X e I'(TM).
o J(X) is self adjoint, that is for any Y, Z € T'(TM)
9(J(X)Y, Z) = g(Y, J(X)Z)
Definition. Let 0 : I — M a geodesic. If Y is a vector field we set
Y = VeVeY
Then, we say that Y is a Jacobi vector field along o if
Y 4+ J(6)Y =0
A

Example. Suppose T : [a,b] x [0,e] — M is so that the curves s — T'(s,t)
are geodesics for all t. Then Y := % are Jacobi vecotor fields, that is

; o
Y — 1Y =
+J<88> 0

Lemma. Let o : I — M a geodesic and p := o(0) € M.

e ConsiderY a Jacobi vector fields along o. If Y (0) L &(0) and Y (0) L
6(0). Then Y (t) L &(t) for allt.

o IfY,Z are Jacobi vector fields along o, so is aY + bZ for a.b € R.
o 5(t) and to(t) are Jacobi vector fields along o.

o Given wo, w1 € TpyM, there exist a unique Jacobi vector field Y along
v such that Y (0) = wo and Y (0) = wy.
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Theorem. Let (M, g1) and (Ms, g2) be Riemannian n-manifolds both with
constant sectional curvature c. If ® : T, My — Ty, Ms is an isometry for
some p1 € My and ps € Ms, then there exist an isometry from a neighbor-
hood of p1 to a neighborhood of p.

Corollary. Let (M,g) be a Riemannian manifold with constant sectional
curvature, that is R(IT) = ¢ for any 2-plane I1 C T'(T'M). Then,

e if R(IT) =0, (M, g) is locally isometric to R™ with flat metric.
o if R(I) = ¢, (M, g) is locally homogeneous.

Definition. Let (M, g) be a Riemannian manifold. We define VR as fol-
lows

(VxR)(Y, Z)W = Vx(R(Y, Z)W)—R(VxY, Z)W —R(Y,Vx Z)W — R(Y, Z)V x W

A

Lemma. Let (M, g) be a Riemannian manifold. Then VR is a tensor, that
is, for any f € C>°(M)

(Vix R)(Y, 2)W = (Vx R)(fY, Z)W = (Vx R)(Y, f2)W = (Vx R)(Y, 2)fW = f(Vx R)(Y, Z)W

Thus, (VyxR)(Y, Z)W)(p) only depends on X (p),Y (p), Z(p), W (p).

Theorem. Let (M, g1) and (Mas, g2) be Riemannian n-manifolds. Suppose
that VR; =0, VRy = 0 and that there is an isometry ® : Tp, My — T, Mo
s an isometry for some p1 € My and pa € Ms, such that

Ry(®X,®Y, 07, ®W) = R (X,Y, Z,W),

that is ®*Re = Ry. Then, there is a neighborhood U of p and a local isometry
¢:U—>U

Theorem. Let (M,g) be a Riemannian manifold. The following are equiv-
alent

(i) VR==0

(i) For any p € M, there is a neighborhood U of p and a local isometry
¢ :U — U such that ¢(p) = p and ¢, = —idg,n

Definition. Let (M, g) be a Riemannian manifold. If any of the equivalent
conditions in the theorem above is satisfied, (M, g) is said to be a local
symmetric space A
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Corollary. If M has constant sectional curvature, then M is a local sym-
metric space.

Theorem. Let M be a geodesically complete and connected Riemannian
manifold. If R(IT) < 0, then, exp, : Ty,M — M is a covering projection
(i.e. local diffeomorphism). Furthermore, if M is simply connected, exp,, :
T,M — M s a diffeomorphism.

Theorem. Let M be a simply connected Riemannian compact n-manifold
such that R(II) > 0. Define

supy R(IT)

PO = S R

Then,

e IfP(M) =1, then M has constant sectional curvature and is isometric
to S™(r) for some r.

o If P(M) < 4, then M 1is homeomorphic to S™.

o If there is 6(n) > 0 such that P(M) < 14 6(n), then M is diffeomor-
phic to S™

o [f P(M) =4, then M is either homeomorphic to S™, or isometric to
CP™?2, HP"* or the Cayley plane.

Theorem. Let (M, g) be a Riemannian n-manifold, p € M and w € T,M
such that ||wl|g, = 1. Then,

S(wh) = {v € T,M : |wl|y, = 1,0 L w} =52

Further, there is ¢(n) such that

p(w,w) = ¢(m) /S( l)llz(span{w,v})dv

That is p(w,w) is the normalized average of the sectional curvatures of the
2-panes containing w. Here dv is the usual measure on S™ 2.

Proof. Choose an orthonormal basis {e1,...,e,} for T,M so that e; = w
and
v=2a%es+ -+ 2",
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such that (z%)2 +--- + (2™)? = 1. Then.
R(span{w,v}) = R(v, w,w,v) = z'z/ R(e;, w, w, e;)

Hence,

/ R(span{w,v})dv = / z'2I R(e;, w,w, e;)da
S(wt) llzll=1

2
= ZR(ei,w,w,ej)/ Il dx
i Ssn—2 T — 1

£l
= d
plon) [ s

Thus, we set ¢(n) = W and we are done. [ |
fsn—Q n—1 dzx

Theorem. Let (M, g) be a Riemannian n-manifold, p € M and w € T,M.
Then, there is ¢(n) such that

T = E(n)/ p(w, w)dw
Sn—1
That is, the scalar curvature is a normalized average of the Ricci tensor.

Proof. Let {ej,...,e,} be an orthonormal basis for T,M. Let w = xle;.
Then,

p(w,w) = z'2? p(e, ¢;)
Thus,

dw = iy €5 ljd
[ otwwdw =3 plevey) [ aloida

-1
irj Sr

= ([ ) Sotenes)

- (/S wdx) r

Thus, we set ¢(n) and we are done. [ |

_ 1
= Tonot [2lPda
Vector Calculus:

Consider M = R? as a smooth manifold with usual coordinates (z,v, z). Set

V = (0z, 0y, 0:)
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If f:R3 — R is in C®°(R3)

of of 0
grad(/) := Vf:(a:iaiﬁ)

If F € D(R3) is a smooth vector field, F = (F, Fy, F3), F; € C>(R3),

curl(F) :=V x F = <6F3 _ o ok

B OF3 OF, B 0F
oy 0z Oz Oxr’ Ox Oy

If G € I(R3) is a smooth vector field, G = (Gy, Ga, G3), G; € C(R3),

0Gy 0G2 0G
1, 0G2  0Gs

div(G) ==V -G = o 3y 5,

Clearly ker(grad) = {constant functions} = R. It’s also well known that
im (grad) = ker(curl), im (curl) = ker(div), and im (div) = C>(R3). Hence,
the following sequence is exact

0 - R < C®(R?) 2% D(R3) <3 D(R3) % ¢ (R3) — 0

Theorem. 1) The Fundamental Theorem of Calculus: If f' is a real-
valued continuous function on [a,b], then

b
£(0) - fa) = / f(w) da

2) Green’s Theorem: Let R be a bounded region in R? with piecewise
smooth boundary OR. Orient the boundary to keep the region on the
left. Let F = (P,Q) be a smooth vector field defined on all of R (i.e.
P,Q : R — R are smooth). Then

Pda:+Qdy:// (E)Q_(“)P) dzdy
OR R ox 8y

3) Stokes’ Theorem (Curl). Let S be a smooth bounded oriented surface in
R3. Orient the boundary S to keep S on the left. Let F = (Fy, Fy, F3),
be a smooth vector field on S (i.e. F;:S — R are smooth) and N the
unit normal giving the orientation of S,

7{ Fy dz+ F; dy + F3 dz=//cur1(ﬁ).NdA
oS S
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4) Gauss’s Theorem (Diveregence). Let R be a bounded region in R? with
smooth boundary and F = (F1, Fy, F3), be a smooth vector field on R
(i.e. F;: R — R are smooth). Orient the boundary using the unit
outward normal N. Then

//aRﬁ-NdA:///Rdiv(ﬁ) dv

Differential Forms:

Let M be a smooth n-manifold. Recall that the tangent bundle T M
is a smooth vector bundle over M whose fibers over p are T,,M. For local
coordinates (U, x%) a local frame for TM over U is given by (9,1, ..., 0m).

The cotangent bundle 7% M is the dual bundle of TM. That is, T*M is
a is a smooth vector bundle over M whose fibers over p are the dual spaces

T'M := (T,M)* = Hom(T,M,R)

Thus, for local coordinates (U, ), a local frame for T*M over U is given
by (dz',...,dz") where {dz'(p),...,dz"(p)} C T;M is the dual basis to
{0,1(p),...,0un(p)} C T,M. The smooth sections of T*M are called 1-
forms on M.

Definition. Let M be a smooth n-manifold. If f € C*(M), we locally
define df e T'(T*M) as '
df := 0, f dx’

Remark. If X € I'(T'M) is locally written as X = X"0,:, we have

[df ()X () = [0 f (p) da’ ())(X7 (9)as (P)) = X™(p)B,r f () = X (f)(p)
v
Definition. Let M, N be smooth manifolds and F' : M — N a smooth
map. Recall that F* : C*°(N) — C>*(M) is given by F*h = ho F and that
Fy: TyM — Tp,) N (note that Fi was also called dF(p) in the Fall) is given

by Fi(X,)(h) = X,(F*h) for any X, € T,M and any h € C>°(N). We define
the pullback of 1-forms F™* : T;(p)N — Ty M by

FHwpp)(Xp) = wrp) (Fu(Xp))

for any wp(,) € T;(p)N and X, € T,M A
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Lemma. Let M, N be smooth manifolds and F : M — N a smooth map. If
h € C*(N), then
d(F*h) = F*(dh)

Proof. Let (U,z!',...,2") be local coordinates in M, p € U and let
(V,y',...,y™) local coordinates in N such that F(U) c V. We abuse
notation by setting dz® := dx’(p) and dy’ := dy’(F(p)). Notice that each
dy’ € Tp*‘(p)N and therefore

n
F*(dy’) = Zaidmi €T, M
i=1
Thus,

[F*(dy”)] [Z a]dx ] (Oyr) = Z agdi,k = a‘,i
i=1

On the other side, by definition of pullback [F*(dy’)](0) = dy’ (FyxOuk).
But, for any h € C*°(N) we have

oh By TN 9y
(F,0,](h) = O, (ho F) = Z =2 ooy (h),

Ik
Byﬂ Oz —
that is
Ay’
F0p = Z 570
Hence,
: : (= 0y — Iy Ay’
*( o1 — o] A ) = =T

Thus, we’ve shown that a{; = 379?;. Finally, if h € C*(NN) we know that
h =0, hdy’ and therefore

ZﬁyghF*dy Z <Z::ay>

Jj=1 Jj=1

Zay] 5, ¢ Zaﬂ (F*h)da' = d(F*h)
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Brief review of Exterior algebras:

Recall that if V' is a real vector space, we set TP(V) :=V ®---®V (p times)
for any p > 0. In particular, T%(V) =R, TY(V) =V T?(V) =V ® V, and
so on. Set

(V)= 17°(V)
p=0

We call T'(V') the tensor algebra on V', and it is the universal unital algebra
generated by V. If J(V) is the two-sided ideal of the tensor algebra generated
by the elements {v@w+w®v : v,w € V}, we define the exterior algebra
A(V') to be the quotient

AV):=TV)/J(V)

We write v1 A+ - - Avy, for the image in A(V') of the pure tensor v1 ®- - - ®wv, in
T(V). In fact, A(V) is the universal unital algebra generated by V' subject to
the relations v Aw+wAv = 0. Hence, A(V') has the following anti-symmetric

property
VIA NNV AN ANvp ==V AN AUp1 AV A== Ny,

forany 1 <i¢ <n—1and vy,...,v, € V. We let AP(V) be the image of
T™(V) under the quotient map T'(V)) — A(V).

Lemma. Let V' be a real vector space with basis {e1,...,en}. Then,

o AP(V) =0 for any p > n.
o A"(V) =span{ei A---Aey} and therefore dim(A"(V)) =1
e In general, forp <n
AP(V) =span{e; A---Nej, 1 1 <y <idg <--- <ip <n}

and therefore dim(AP(V)) = (Z)

Back to differential forms:

Let M be a smooth n-manifold. Recall that we defined 1-forms to be smooth
sections to the bundle T*M. Therefore, any 1-form w can written as

W = fldl‘lv
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where each f; € C*(M).

Definition. In general, If M is a smooth n-manifold, we define a p-form
on M as a smooth section of the vector bundle

AP(T*M) 5 M

That is, a p-form is a smooth map w : M — AP(T* M), such that mow = idy;.
So, for any =z € M we, have a map

wx): TyM x -+ xT,M — R.

p times

Sometimes w(z) is denoted by w, or simply by w when z is clear from
context. We denote by QP (M) := I'(AP(T*M)) the space of p-forms in M.
Notice that Q°(M) = C°(M) and that Q4(M) = 0 for any q > n. A

Remark. Consider sets [ = {i1,...,4p : 1 < i3 < --- <4, < n} and let
dx! := dz™ A--- Ada. Then, any p form w can written as

w= Z frda”,

=p
where each fr € C>(M). v

Remark. If w € QP(M) and 6 € Q4(M), then we get w A 6 € QPTI(M) so
that (w A 8)(z) = w(z) AO(x) for any x € M. Thus,

wAO=(-1)P0ANw

Definition. Let M, N be smooth manifolds. If FF : M — N a smooth
map. it induces a pullback of p-forms F* : QP(N) — QP(M), so that if
w € QP(N), then F*w € QP(M) is given by

(Frw)z(X1,. .., Xp) = wpE) (F X1, ..., FL X))
forany x € M and X1,..., X, € T, M A

Definition. Let M be a smooth n-manifold. For p > 0 we define a map
d: QP(M) — QPTY(M) by

d > frda" | = > dfinda’ =D ( Y Oy f1 dﬂ') A dz!
1

[7|=p |7|=p [I|l=p \i=
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Lemma. Let My, My be smooth manifolds and dyy, : QP(M;) — QPTL(M;)
the map defined above. (when M; is clear we denote d := dyy;.)

For any w € QP(M;), d(dw) = 0 € QPT2(M;), ie. d* = 0.

If F : My — My is a smooth map, then F*(dy,w) = dpr, (F*w) for
any w € QP (My).

IfU Cc M, d(w|U) = (dw)\U.

For any w € QP(M;) and 0 € Q4(M;) we have
dwANb)=dwNb+(—1)PwAdb

Remark. Let M be a smooth n-manifold. Notice that since d? = 0, we get
a complex, known as the de Rham complex, given by

C(M) = QM) -% o' (M) L - L ar(an)

Orientable Manifolds:

Lemma. Let M be a smooth n-manifold. The following are equivalent and
if either are satisfied M is said to be orientable

(1) There is an atlas {(Uq, pa)} so that the transition functions satisfy
det 30:175 >0

(2) There exist a smooth n-form which never vanishes, such form is known
as the oriented volume form.

Example. M = S™ C R"*! is orientable and the oriented volume form is
given by

n+1
Wy = Z(—l)“‘lmi de' Ao Adai A A"
i=1

where the hat means that dz’ is omitted.

If M = S, we have w; = x dy — y dr. Thus, if 6 — (cos(d),sin(f))
parametrizes S we get

w1 = cos(#)d(sin(h)) — sin(8)d(cos(8)) = (cos? O + sin? §)df = db

29



If M = S?%, we have wo = o dy Adz —y do Adz + 2z de A dy. Thus, if
(¢,0) — (sin(¢) cos(f), sin(¢) sin(f), cos(¢)) parametrizes S? we get

wy = sin¢ do A db

v
Example.
o RP" :=8"/x ~ —u is orientable if and only if n is odd.
o (8" xS8")/(x,y) ~ (—y,x) is not orientable.
o (S"xS")/(x,y) ~ (—x,—y) is orientable.
v

Theorem. If M, N are orientable smooth manifolds, then M x N is ori-
entable. If either M or N is not orientable, then M x N is not orientable.

Definition. Let M be a smooth n-manifold and X € I'(T'M) a smooth
vector field. We define a map tx : QP(M) — QP~L(M) as follows

tx (W) (X1, .o, Xpo1) = we (X (z), X1, ..., Xp_1)
for Xq,..., X, 1 €T, M. A

Lemma. Let M be a smooth n-manifold, X,Y € T'(TM), f € C®(M),
we QP(M) andn € QI(M).

o ix(df)s = X(f)(2).
o 1x(fw) = fix(w)
o ix(wAn) =tx(W)An+ (—1)Pw A ux(n)
L LfX(W) = fix(w)
o ixty(w) =tx(w)~+ ty(w)
Example. M = R?

Lo, (dx N dy) — 1p,(dy A dx) = —dx + dy
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tza, (dx Ndy Ndz) =z dy Ndz
Lea, (dx Ndy Ndz) = —x dz Ndz

Theorem. Let M be an oriented n-Riemannian manifold and My C M a
closed oriented n — 1 submanifold (for example My = OM ). Let wys be the
oriented volume form of M and wy, the one of My. Let N be the unit
normal vector field compatible with the orientation of M and My. Then,

WMy = Lﬁ(wM)

Example. If M = R*, M; = S"~!. We have wgn = dz' A --- A dz™ and
clearly N = 10,1 + - + 2"9,,,. Then,

wgn-1 = L5 (wrn)

= Ll.laz1+...+xnazn (dajl VANEEIVAN d$n)

n
= ZLmia i(d:nl Ao Adx™)
i=1

n
= Z(—l)”lxi det A Adxi A A da®
=1

Integration of differential forms:

Definition. Let D, D’ C R" and ¢ : D — D’ a diffeomorphism. Then, ¢ is
saif to be orientation preserving if

det ' >0
A
Remark. If 7 = (y!,...,y") are coordinates in D and
Pyt oy = (@), 2" (D)
Then,
oz’
r_
det ¢’ = det <8yj>
v
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Theorem. (Change of Variables: Multivariable Calculus) Let D, D' C R™,
¢ : D — D' an orientation preserving diffeomorphism and f : D' — R a
smooth map. Then,

le del - dz" —/Dgo*(f)detcp’ dyt - dy™

Theorem. Let D,D' C R", ¢ : D — D’ an orientation preserving dif-
feomorphism and w € Q*(D') an n-form given by w = f dx* A--- A dz™.
Then

©*'w=*(f)dety dy' A--- Ady"™ € QV(D)

Definition. Let D C R" and w € Q%(D) an n-form given by w = f da! A

-+ Adx™. We define
/w::/fdxl--'dmn
D D

Corollary. (Change of Variables: Differential Forms) Let D,D" C R",
¢ : D — D' an orientation preserving diffeomorphism and w € Q"(D")
an n-form given by w = f de' A--- Ada™. Then. Then,

/w:/ap*w
! D

Definition. Let M be an orientable smooth n-manifold and w € Q"(M)
an n-form such that

A

supp w = {x € M : w(x) # 0}

is compact. Pick an atlas {(U,,¢a)} for which the transition functions
¢Yap @ Dg — D, are orientation preserving, where D, := ¢(U,) C R".
Let o = ¢3! : Do — Us. Then, % @ Q"(Uy) — Q%(D,). There is
N € N such that supp w C Uy, ..., Usy. Let {¢r}_, be a partition of
unity subordinated to {Us, }4_,. We define the integral of w by

/szsz:/D% 0 (61 - )

Remark. The definition above is independent from the choice of atlas and
from the partition of unity. v

A
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Theorem. (Stokes’ Theorem) Let M be a smooth oriented n-manifold
with boundary OM and w € Q"Y(M) an (n—1)-form with compact support.
Then, OM has a natural orientation so that

/ w—/dw
oM M

Remark. The statement of Stokes’ Theorem requires a bit of interpretation.
On the left-hand side w is to be interpreted as ¢}, ,w where 1oy : OM — M
is the canonical inclusion. If M = & then the left-hand side is to be in-
terpreted as zero. When M is 1-dimensional, the left-hand integral is really
just a finite sum. v

Vector Calculus vs Differential forms:

Each one of the flowing squares commutes:

f € C®(R3) f € QOR3)
grad d

(Fl,FQ,F3) S P(R3) — Fidx + ngy + ngz S Ql(R?’)

curl d
(Gl, Go, Gg) S F(Rg) —— Gidy ANdz + Gadz ANdx + Gsdx AN dy € 92(R3)
div d
g € C®(R3) gdz A dy A dz € Q3(R3)

Indeed, recall that grad(f) = (0, f, 0y f, 0z f), while
df =0, f dx +0yf dy+ 0. f dz
Also curl(Fy, Fo, Fy) = (0yF3 — 0.F>, 0, F1 — 0, F3, 0, F» — 0,F1), whereas

d(Fld.’L' + ngy + ngz)
= <8yF3 — 8zF2)dy ANdz + (@Fl — 6zF3)dZ Adx + (8$F2 — 8yF1)da: A dy

Finally, we had diV(Gl, Go, Gg) = 0,G1 + @;GQ + 0,G3, while

d(Ghidy Ndz + Gadz N dx + Gadx A dy) = (0,G1 + 0yGa + 0.G3)dx ANdy Ndz
De Rham Cohomology
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Definition. Let M be a smooth n-manifold. A form w € QP(M) is said to
be closed if dw = 0. A form w € QP(M) is called exact if w = dn for some
n € QP~Y(N). Notice that, since d?> = 0, any exact form is closed.

One defines the The form w € QP(M) group HYp (M) to be the set of closed
forms in QP (M) modulo the exact forms, i.e.
k QP(M Pt (M
im(d: QP~1(M) — Qp(M))

A

Remark. Recall that for a smooth function F' : N — M, the pullback
F*:QP(M) — QP(N) is so that

d(F*w) = F*(dw),
Therefore, F* descends to a linear map [F*] : Hip (M) — HY, (N) given by
[F][w] = [Fw]
which is well defined. v
Example. Notice that H{; (M) = {locally constant functions on M}. Thus,

if M has k connected components, we have H(M) 2R @ --- R, k times.
In fact, if M = |_|i-€:1 M, and

]lMi (a;) =

0 lfmng

Then {[1,]} is a basis for H3g (M). Moreover, for any p,
k
HEL (M) = €D HEp (M)
i=1
v

Example. If M is a compact smooth oriented n-manifold without bound-
ary, Stokes theorem applied to the volume form wj; implies that

0 # [war] € H"(M)
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Example.
R if p=0

Hin({pt}) = {0 e

Example.
R if p=0
s = {2 Lr=o
0 if 0<p<n

In fact, H3z (S™) = R[Lgn] and HJs(S™) = Rlwgn]. This is commonly writ-
ten as Hjp (S™) = span{[lgn], [wgn]} = R[1gn] & Rlwgn]. \4

Lemma. Let M, N be smooth manifolds and F : M x[0,1] — N be smooth.

Define Fy, F1 : M — N by Fy(z) :== F(z,0) and F\(z) := F(z,1). Then,
[Fg] = [F{] : HiR(N) — HiR(N)

That is, the pullback of two homotopic maps is equal.

Definition. Let M be a smooth manifold and N C M a smooth submani-
fold. We say that N is a deformation retract of M, denoted by N \, M,
if there is a smooth map H : M x [0,1] — M such that

o H(z,0) =x for all z € M.
e H(y,t)=yforall y e N and all ¢t € [0, 1].

o H(xz,1) e N for all z € M.

A

Lemma. Let M be a smooth manifold and N C M such that N \, M.

Then, for any p
Hp (M) = Hig (N)

Corollary. HE. (R™\ {0}) = HI; (5™
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Theorem. (Mayer Vietoris) Let M be a smooth manifold with or without
boundary, and let Uy, Us be open subsets of M whose union is M.

Uy
SN

Ui NUy M
X %
Us

For each p, there is a linear map 6 : Hi (U N Usz) — Hggl(M) such that
the following sequence, called the Mayer—Vietoris sequence for the open cover

{U1,Us}, is exact:

N
1

gk — X )
o HPL(M) R HE(U)) @ HEL (Us) =% HEL (UL NUy) = HE (M) — - -
Example.

R if peven,0<p<2n

HgR(CPn) = {0 else

Lemma. Let G be a finite group which acts without fized points on a compact
smooth manifold M without boundary. Let M := M /G and let m : M — M
be the associated covering projection. Then

(1) ©* : Hig (M) — HgR(M) is injective.

(2) Hiy(M) = im(n*) = {[u] € Hlyg (M) : [g"][w] = (] for all g € G}.

Where For each g € G, the map g : M — M ‘s so that g(x) = g -z for
reM.

Lemma. Let M be a smooth manifold and let S* (for a > 1) be the unit
sphere in R*t1. Let P be any point of S* and let vp(z) := (P, z) define an
inclusion of M in S* x M. There is a natural short exact sequence

0 — HEZA(M) =5 HE (M x §%) ~25 HPL (M) — 0
Corollary. Let w; be the volume form on S%. Then,

Hip(S™ x --- x §%) =span{lwy, A---Awg,] 1 <idp <--- <y < k}
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3 Spring 2018: Math 639

3.1 Theorems and Definitions.

Let (-,-) be a positive definite inner product on a finite dimensional real
vector space. Let AP(V') be the exterior p-th algebra on V. Let {e1,...,e,}
be an orthonormal basis for V. If I = {1 < i3 < -+ < i < n}, let
er :=e; A---Aeg,. Recall that {er} forms an orthonormal basis for AP(V').
We have that AP(V') inherits a natural inner product as follows

(er,ey) :=det ((€i7€j)>

iel,jed

Definition. Let (-,-) be a positive definite inner product on a finite dimen-
sional real vector space. Let AP(V) be the p-th exterior algebra on V. If
€€V, let ext(§) : AP(V) — APHL(V) be the linear map

ext(§) rw i A w.
Let int(¢) := ext(£)* : APTL(V) — AP(V), i.e.
(ENw,¢) = (w,int(&)9)
for all w € AP(V) and ¢ € APTL(V). A

Lemma. Let (+,-) be a positive definite inner product on a finite dimensional
real vector space. If &,m € V, then

ext(§) int(n) + int(n) ext(£) = (7, &) idar(v)

Definition. Let M be a Riemannian m-manifold. Let g;r := (0, 0,i),

and let g = y/det(g;;). We have

dvol = gdza! ... dz™.

The co-derivative 6 : QP(M) — QP~1(M) is defined by

(dw, o) 2 = /g(dw,a)gdxl coode™ = /g(w,éa)gd:vl codr™ = (w,00) 2

The Laplacian operator on pforms is then given by A = dd+dd. A p-form
w is said to be harmonic if Aw = 0. A
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Remark. If w € QP(M) is harmonic, i.e. Aw = 0, then

(Aw,w)r2 =0 < (§(dw),w)r2 + (d(0w),w) 2 =0
& (dw,dw)p2 + (0w, dw)r2 =0
& |ldwl 2 + [|6w][r2 =0

Thus, dw = 0 and dw. Hence ker(A) = ker(d) Nker(d). In particular, if
w € ker(A), then [w] € HY (M). v

Theorem. (Hodge’s Theorem) Let M be a compact Riemannian mani-
fold without boundary. Then the map w — [w] from ker(A) to Hip (M) is
an isomorphism of vector spaces.

Corollary. (Kunneth Formula) Let My, M be compact Riemannian
manifolds without boundary. Then,

Hgg (M x M) = @ Hép (M) A Hig (M)
a+b=p

Definition. Let M be a smooth Riemannian m-manifold and w € QP(M)
given by
w= Z fil,...,ipdfﬂil A Adz'

1<ip < <ip<m

The Levi-Civita connection on p-forms is defined by the formula

vﬁziw - Z (8xlf21,,zp)dw” ARSRNA dwip

1<y <--<ip<m

P m
= Y D> T g day A Adat T Adat A dat A A da
1<iy <-<ip<mv=1 k=1

In particular,
Vo, do! = —Ty/ da*

Lemma. Let M be a Riemannian m-manifold. Then

o d= Zext(dwi)vazi
i=1
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m

° j= —Zint(d:ri)vazi

=1

Definition. Let M be a compact oriented m-manifold without boundary.
Let (-, ) be the pointwise inner product on p-forms. Let orn € Q™ (M) be the
oriented volume form. The Hodge x operator, %, : QP(M) — Q"7 P(M),
is characterized by the property:

(wWp, Wp) OrN = Wy, A *pp,. R

Remark. Let M be a compact oriented m-manifold without boundary. For
any w,n € QP(M) we have

(w,n)m:/ w A *1)
M

Lemma. Let M be a compact oriented m-manifold without boundary. Then

o _ 2 _ 2 _ 4
*m—pxp = Epidp and that xpAp = €,Ap,—pxp, where €5 =1 and €; = 1, i.e.

ep = 1, and €, = £1,, are an appropriate choice of signs.
Corollary. Let M be a compact oriented m-manifold without boundary.

Then, ()™t = epkm_p

Remark. Let M be a compact oriented m-manifold without boundary. If
d: QP(M) — QPTY(M) and 6 : QP(M) — QP~L(M) are the differential and
codifferential maps respectively, then

*m—p—10kp = £0

Theorem. (Poincaré Duality) Let M be a compact oriented m-manifold
without boundary, then

HY (M) = 1P (M)
where the isomorphism from HYp (M) to Hjp *(M) is induced by *p.

Corollary. Let M be a connected, compact and oriented m-manifold without
boundary, then
HEL(M) = Hip (M) =R
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Theorem. Let M be a compact oriented m-manifold without boundary. The
map L : HP(M) ® H™P(M) — R given by

T(wp @ Om—p) = / Wp A Om—p
M
is well defined. Furthermore, it is a perfect pairing, that is given a non zero

[wp] € HP(M) there is [0n—p)] € H™P(M) such that Z(wp @ @Wm—p) # 0

Corollary.
H*(CP") = span{[1], [z2], [3],..., [3"]}

Brief Review of Integral Curves and Flows:
Definition. Let M be a smooth manifold. A smooth curve o : I — M is
said to be an integral curve of X if
U(t) = Xa(t) Vtel
If 0 € I, the point 0(0) is called the starting point of o. A

Lemma. Let X be a smooth vector field on a smooth manifold M. For each
point p € M, there exist € > 0 and a smooth curve o : (—¢,e) — M that is
an integral curve of X starting at p.

Lemma. Let X be a smooth vector field on a smooth manifold M, let I C R
be an interval, and let o : I — M be an integral curve of V.

o For any a € R, the curve & : I — M defined by o(t) = o(at) is an
integral curve of the vector field aX, where I = {t e R: at € I}.

o For any b € R, the curve & : I — M defined by 6(t) := o(t +b) is an
integral curve of the vector field X, where I = {t e R:t+ b€ I}.

Remark. Let M be a smooth manifold and X € I'(T'M), and suppose
that for each point p € M, X has a unique integral curve starting at p and
defined for all ¢t € R, which we denote by ®®) : R — M. Then, for each
t € R, we can define a map ®; : M — M by sending each p € M to the
point obtained by following for time ¢ the integral curve starting at p:

Py(p) == o) (t)
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The second part on the previous lemma implies that for any s € R, the map
t — ®P)(t 4 ) is an integral curve of X starting at ¢ := ®®)(s). Since we
are assuming uniqueness of integral curves, we just proved

@ (t) = oW (¢ + 5),
or equivalently ®;( ®s(p) ) = P14s(p), which gives
(I)t ©) (I)S = q)t+5

Definition. Motivated by the previous remark, we define a global flow
on M to be a continuous map ® : R x M — M satisfying the following
properties

e &(0,p) =pforall pe M.
o O(t, ®(s,p)) = P(t+s,p) for all s,t € R, p e M.

A

Remark. We've already seen how a vector field X € I'(T' M) can give rise to
a (global) smooth flow by considering the integral curves of the vector field,
such flow will be denoted by ®X. Conversely, if ® : R x M — M is a smooth
global flow, for each p € M we define ®®) : R — M by ®®)(t) := &(¢, p)
and X, € T,M by

X, := o®)(0)
then get a vector field X by considering the map p — X,,. Furthermore,
each curve ®®) is an integral curve of X. v

Lemma. Let X,Y € ['(TM). For each t € R we define ® : M — M by
®X(p) := ®X(t,p). Then.

(@Y, 0 @%, 0 @) 0 &%) (p) = p+ £*[X, Y], + O(t?)

Lie Groups and Lie Algebras:
Lie Groups:
Definition. A Lie Group G is
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A smooth manifold with element 1 € G.

A multiplication map m : G X G — G such that m is smooth.

e An inversion map inv : G — G such that inv is smooth.

(G, m,inv) give G the structure of a group.

Example. The following are all matrix Lie groups

e GL(n,R) := {A € M,(R) : det(A) # 0}
e O(n) ;== {A€GL(n,R): AAT =I,}

o SL(n,R) := {4 € GL(n,R) : det(A) = 1}
e SO(n) := SL(n,R) N O(n)

e GL(n,C) := {A € M,(C) : det(A) # 0}
e U(n):={A€GL(n,C): AA* = I}

e SL(n,C) := {A € GL(n,C) : det(A) =1}
e SU(n) :=SL(n,C) N U(n)

Lie Algebras:

Definition. A Lie algebra (over R) is a real vector space g endowed with
a map called the bracket from g x g to g, usually denoted by (X,Y) — [X, Y]
that satisfies the following properties for all XY, 7 € g

e BILINEARITY: For a,b € R,
[aX+bY,Z] = a[X, Z]+b]Y,Z] and [X,aY+bZ] =a[X,Y]+b[X, 7]

e ANTISYMMETRY:
[Xv Y] = _[X7 Y}

o JACOBI IDENTITY:
X, 1v,2)] + [v,[2.x]] + [2.1X.¥]] =0
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If g is a Lie algebra, a linear subspace ) C g is called a Lie subalgebra of
g if it is closed under brackets. In this case b is itself a Lie algebra with the
restriction of the same bracket.

If g and b are Lie algebras, a linear map 6 : g — h is called a Lie algebra
homomorphism if it preserves brackets:

0X,0Y], = 0[X,Y],

An invertible Lie algebra homomorphism is called a Lie algebra isomor-
phism. If there exists a Lie algebra isomorphism from g to h, we say that
they are isomorphic as Lie algebras. A

Lie Algebra of a Lie Group:

Definition. Let G be a Lie group. If ¢ € G we have left and right

multiplication by g denoted by L, and R, respectively. That is, Ly(h) = gh
and Ry(h) = hg. A
Remark. Both L, and R, are diffeomorphisms from G to it self and clearly
L, =Ly, R;' = Ry-1. Furthermore, LyRy, = RyLg for any g,h € G. ¥

Remark. Recall that for a smooth manifold, a vector field is a smooth
section of the tangent bundle TM. In what follows, if X € I'(T'M) is
a vector field, we’ll use the notation X, := X(p) € T,M. Furthermore, if
F: M — N is a diffeomorphism of smooth manifolds, we have a well defined
pushforward of vector fields Fy : T'(T'M) — I'(T'N) given by

(FiX)q = F(Xp) for X el'(TM), ge N

Where F., in the RHS is the usual differential F, : TF—l(q)M — Ty, N. Finally,
a routine computation gives that for any X,Y € I'(T M)

F[X,Y] = [F.X,FY]

All the above makes sense because F' is a diffeormorphism, otherwise the
pushforward of vector fields may not be well defined. v

Definition. Let G be a Lie group. The Lie algebra of G, denoted by
g(G) := g, is the space of left invariant vector fields. That is,

g:={X el(TG): (Ly)+ Xy = Xgp, for all g,h € G}
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Since Ly : G — G is a diffeormorphism, thanks to the remark above we have
in fact
g={X eI(TG) : (Ly)+X = X for all g € G}

A
Lemma. If X\ Y € g, then [X,Y] € g, that is g is indeed a Lie algebra.
Proof. For any g € G we have
(Lg)«[X, Y] = [(Lg)« X, (Lg)Y] = [X, Y]
|

Lemma. The map X — X1, from g to TG is a bijection. Thus, we usually
identify g with T1G.

Proof. Suppose first that X; = Y7 for X,Y € g. Then, for any g € G
Xg = (Lg)X1=(Lg)Y1 =Y,

Thus X =Y, proving injectivity. To show surjectivity, take any w € T1G
and let’s define X% by
X;” = (Lg)sw.

Then, X* € I'(T'G). Moreover, for any h € G we get
(Ln)« Xy = (L)« (Lg)sw = (LpLg)sw = (Lpg)sw = Xy,

Hence, X" € g. By construction X}’ = w. |

Remark. When G = GL(n,R), its Lie algebra g which we’ve identified
with 77, G, is now in turn identified with M, (R). Thus, for any w € M, (R)
and any g € GL(n,R) we have

Xy = (Lg)«w = gw
because L, is a linear map and therefore (Lg), = Ly. v
Remark. Let G = GL(n,R), whose Lie algebra is g = 77, G = M, (R).
If X := X% € I(TG) for any w € M,(R), then its flow ®X is such that

®Un)(t) ;= ®X(I,) is the unique integral curve to X starting at I,,. Thus,
since by construction 9 {®()}(0) = X7, = I,w = w, it follows that

;" (In) = expy, (tw)

44



For g € G, notice that the curve t — g® (I,) is the integral curve for X
starting at g. Thus, by uniqueness of such integral curves, we ought to have
7 (9) = g®{* (I,,), that is

X > tkwk
@7 (9) = gexpy, (tw) =g Z T
k=0

That is, in this case the exponential map coincides with the usual exponen-
tial of matrices. v

Remark. Let G = GL(n,R), whose Lie algebra is g = T, G = M, (R).
The vector spaces g and M, (R) have independently defined Lie algebra
structures-the first coming from Lie brackets of vector fields, and the sec-
ond from commutator brackets of matrices. The next theorem shows that
the natural vector space isomorphism between these spaces is in fact a Lie
algebra isomorphism. v

Theorem. Let G = GL(n,R) and g its Lie algebra. Forw € T; G = M, (R)
let X € g be as in the previous proof. Then,

[Xv7Xw] — X[v,w}
for any v,w € My (R).

Theorem. Let G be a Lie group. The map exp; : T1G — G is a local
diffeomorphism such that (exp;). = id and for any w € TG,

exp; (tw) expy (tw) = expy ((t + s)w)

Theorem. If H is a closed subgroup of a Lie group G, then H is a closed
submanifold of H and it’s a Lie group on its own right. Furthermore, the
Lie algebra of H, denoted by b, is given by

h={weg:exp,(tw) € H forall t R}

Example. Recall that O(n) := {4 € GL(n,R) : AA” = I,}. Then, the Lie
algebra of O(n), which we denote by o(n), is given by

o(n) ={w e M,(R) : exp(tw) € O(n) for all t € R}
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Suppose that w € o(n). Then, for any ¢t € R we have exp(tw) € O(n) and
therefore

' =1, <= exp(tw) exp(tw?) = I,
= (I, +tw+ O(t?)) (I, + tw” + O(t?)) = I,
— I, +tw+tw! + O =1,
— tw + tw! = O(t?)
= w+w =0t

exp(tw) exp(tw

Thus, if t = 0 we get w + w? = 0. Now suppose that w € M,(R) is such
that w + w? = 0. Then, for any t € R

exp(tw) exp(tw)? = exp(tw) exp(tw?) = exp(tw) exp(—tw) = exp((t—t)w) = I,
Thus, we’ve shown
o(n) = {w € M,(R) : w+w’ =0}
v
Example. Let (-,-) be an inner product in R™ with signature (P, N), for
P+ N =n. Let
O(P,N) :={A € GL(n,R) : (Az, Ay) = (z,y) for any =,y € R"}

The adjoint of a matrix w € M, (R) for this inner product is defined as usual
by (wz,y) = (z,w*y). Then, we find that the Lie algebra of O(P, N) is

o(P,N)={w e M,(R) : w+ w* =0}
v

Example. Recall that U(n) := {A € GL(n,C) : AA* = I,,}, where A* is
the conjugate transpose of A. Then,

u(n) ={w e M,(C) : w+ w* =0}

Lemma. Let w € M, (F), where F is either R or C. Then,

det(exp(w)) = e"®)
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Corollary. Recall that SL(n,F) :={A € GL(n,F) : det(A) = 1}, where F is
either R or C. Then

sl(n,F) = {w € M,(F) : tr(w) = 0}

Example. Recall that SO(n) := SL(n,R) N O(n) and SU(n) := SL(n,C) N
U(n). Then

so(n) = sl(n,R)No(n) = {w € M,(R) : w+w’ =0, tr(w) =0}
and

su(n) = sl(n,C)Nu(n) = {w e Mp(C) : w+w* =0, tr(w) =0}

Remark. How to compute the Lie algebra of H x K in terms of their Lie
algebras b, €7 Suppose that H and K are both Lie subgroups of GL,(R)
and GL,,(R) respectively, so we may think of H x K as a Lie subgroup of
GL,+m(R). Notice that we are embedding M, (R) x M,,(R) into M, (R)
via the map

A 0n><m>

mxXn B

U(A, B) = (O

Now, notice that the underling space for the Lie algebra of H x K is

Ty, (HxK) 2T, (H)x T, (K)=bxtC My(R) X My(R) = My in(R)

n+m(
Furthermore, the Lie bracket is
[L(A1, B1), (A2, B2)] = ([A1, A2], [B1, Bs))

for Ay, Ay € b and By, By € . That is, the Lie bracket for 77, (H x K) is
completely determined by the one for h and the one for €. Finally, suppose
that

b := spang{ei,...,ep}, €:=spang{fi,..., fx}.
Then,

Tr,..,(H x K) = (b x £) =spang{c(e1,0),...,t(en,0),¢(0, f1),...,¢(0, fr)}

v
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Remark. Let G,H be Lie groups whose Lie algebras are g and h. If
F : G — H is a smooth map that is also a group homomorphism, for any
X € g we get an element F* X in h by considering the vector field obtained by
the derivation F,X; € T1 H. Even though F' may not be a diffeomorphism,
the map Fi : g — b is a well defined Lie algebra homomorphism.

We have then a functor from the category of Lie groups to the category
of Lie algebras sending a group G to its Lie algebra g(G) and a morphism
F:G— H toF,:g(G) — g(H). This is not a 1 to 1 functor, since non
isomorphic groups can have same Lie algebras. However, isomorphic groups
must have isomorphic Lie algebras. v

Theorem. If g is a Lie algebra, then there is a simply connected group G
such that g(G) = g

Theorem. If 0 : g — b is a Lie algebra homomorphism, and H,G are
simply connected groups such that g(G) = g and g(H) = b, then there is a
Lie group homomorphism © : G — H such that O, = 0.

Lie Algebra Cohomology:

Definition. Let g be a finite dimensional Lie algebra with basis given by
{e1,...,en}. The Lie algebra structure constants Cijk € R are given by
[ei, ej} = Cijkek
Antisymmetry of the bracket implies that Cijk = —Cjik . A

Definition. Let g be a finite dimensional Lie algebra with basis given by
{e1,...,en}. Let {e1,...,e,} C g* the dual basis, that is each e’ : g — R is
such that A

e'(ej) = i
We define a map d : g* — A?g* by

dek .= — Z Cz‘jkei Ael
1<J
Extending this with the Leibnitz rule gives a map d : APg* — APT1g*. Jacobi

identity for the bracket implies that d> = 0 and therefore it makes sense to
define

_ ker(d: APg" — APFLg®)

Pl .
H"(g) : im(d : AP—1g* — Arg*)

48



Theorem. (Hodge) Let G be a compact connected Lie group and g its Lie
algebra. Then HP(g) = Har(G).

Example. One can use Hodge Theorem to determine when a Lie algebra
comes from a compact connected Lie group. For example, if the Lie algebra
cohomology doesn’t satisfy Poincaré duality, then it can’t be the cohomol-
ogy of a compact manifold. v

Remark. Notice that any Lie group G is orientable. Indeed, suppose G
has dimension n as smooth manifold. Let {wi,...,w,} be a basis for T1G.
As usual we define vector fields X*# € I'(T'G) by letting X := (Lg).w; for
each g € G. For each g € G, { X, ..., X"} is then a basis for TyG. This
gives a map TG — G x R" sending (g,a;X;"%) to (g, (a1,...,a,)) which is
clearly smooth and has a smooth inverse. Thus T'G is trivial and hence G
ought to be orientable (product of orientable is orientable and the tangent
bundle is always orientable). \

Theorem. Let G be a compact connected Lie group.

o (G is unimodular: There is a bi-invariant volume form on G, that is
there is w € Q"(G) such that (Lg)«w = (Rg)«w =w for all g € G.

e There is a bi-invariant Riemannian metric on G, that is there is
(,+), a smooth positive definite inner product on I'(T'G), such that
(Ly)eX. (Lg)-Y) = ((Ry) X, (B,).Y) = (X.Y) for all X, € '(TG),
and all g € G,

e Any harmonic p-form in bi-invariant.
Theorem.

e Ifg is a finite dimensional Lie algebra, then g is isomorphic to a matrix
algebra.

e If g is a finite dimensional Lie algebra, then g is the Lie algebra of a
matricz group.

o Let G and H be compact connected Lie groups, whose Lie algebras are
given by g and . Then G = H if and only of g = b.
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Definition. Let g be a finite dimensional Lie algebra. For each X € g, we
define ad(X) € Hom(g, g) by

ad(X)Y = [X,Y]
Jacobi identity implies that
ad[X,Y] = [ad(X),ad(Y)].
Thus, ad : g — Hom(g, g) is a Lie algebra homomorphism A

Definition. Let g be a Lie algebra. The Killing form £ : g x g — R, is
given by
K(X,Y) :=tr(ad(X)ad(Y))

Notice that £(X,Y) = K(Y,X). If {e1,...,en} is a basis for g, we put

Kij = IC(eZ-,ej). A
Example. Let G be a Lie group and g its Lie algebra. If K is non-
degenerated, then G is unimodular. v

Remark. Let G < GL(n,R) be Lie group and g its Lie algebra. For any
X € gandany g € G we know that (Ly),X = X, furthermore we know that
(Lg)sw = gw for w € My (R). So (Lg)« is actually left matrix multiplication
when we regard g C M,(R). A natural question is to find how (Ry). acts
on g as a subset of M,(R). Well, take any X € g, g € G, since Ry is a
diiffeomorphism

((Rg)+X), = (Rg)sXp (1) = (Rg)Xg1 = Xgm19 = Ly Xp,9 = g~ ' X1,.9

Thus if w corresponds to X under the identification g <+ 17, G, it follows
that g~ lwg corresponds to (Ry).X under the same identification. Under
out previous notation we’ve shown

X979 = (Ry), X"
Therefore we say that (Ry).w = g wg for any w € T, G. This gives us a
map Ad : G — GL(g) given by Ad(g) = (Ry)« for any g € G. It turns out
that Ad, : g — Hom(g, g) is actually given by ad. \/

Theorem. Let G be a closed connected subgroup of GL(m,R) for some m.
Let (-,-) be a left-invariant symmetric bilinear form on TG. This is defined
on matrices A,B € T;,G = g by letting (A, B) := (X4, XB), where as
usual the vector field X4 is defined by X;‘ = (Lg) * A for any g € G. The
following conditions are equivalent
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e (-,-) is bi-invariant

(A,B) = (g7'Ag,9 ' Bg) for any A,B € g and g€ G.

ad(A) is skew-adjoint, that is for any B,C € g
(ad(A>B7 C) = _<B7 ad(A)C)

For the following condition to be equivalent we need to add that (-,-)
gives Riemannian metric and V is the Levi-Civita connection.

then for any A, B € g

VyaXP = %XV‘:B]

Theorem. Let G be a closed connected subgroup of GL(m,R) for some
m. Let (-,-) be a bi-invariant Riemannian metric and V the Levi-Civita
connection. Then

1
e R(XA XB)XC = -

e The curves gexp?(At)h are geodesics in G for any g,h € G and A € g.
That is, the exp? in Lie group sense is the exponential map in the Levi-
Civita sense.

[[A, B],C} forany A,B,C € g

Lemma. Let G be a closed connected subgroup of GL(m,R) for some m. Let

(+,-) be a bi-invariant Riemannian metric and V the Levi-Civita connection..
Then

o (G is geodesically complete
° p= —iIC, where p is the Ricci tensor and KC the Killing form.

o [C is negative semi-definite.

If K is negative definite and G is connected, then G is compact.

o If G is compact, then G is isomorphic to SO(n) for some n.

Proof. We only prove the assertion If K is negative definite and G is
connected, then G is compact, since it could be a potential qual problem.
Since K is negative definite, we use it to get a negative definite metric on
G. Thus, p = —1K is positive definite (therefore p > e(,-)) and therefore
we can appeal to Myers’s theorem from Spring, which assures us that G is
compact. |
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Theorem. If G = SO(n), the Killing form is negative definite.

Example. As a corollary of the previous Lemma and Theorem, it follows
that if G is compact, then its Killing form is negative semi-definite. Thus,
any Lie algebra whose Killing form is not negative semi-definite can’t come
from a compact group. v

Theorem. (Hodge) Let G be a connected compact Lie group. Then Hjp (G)
(which is isomorphic to H*(g) by a previous thm) is an exterior algebra on
odd generators. That is

Har(G) = Alzy, ..., 2]
where each x; has odd degree.

Example. The previous theorem implies that any Lie algebra whose co-
homology is not an exterior algebra on odd generators can’t come from a
compact group. For example, if one gets

H*(g) = R[1] ® Rle'] @ Re! A €3]

We have H*(g) = Ale!, e! Ae3] and therefore g can’t be the Lie algebra of a
compact group. v

Example.
o Hi(T™) = Aldb,,...,db,] where each db; € QL(sh).
o Hip(5%) = Alwgs]
° HQR(U(2)) = H:ij(Sl X S3) = Awgr, wgs]

v

Example. Why is S! x S2? not a Lie group. Well it is a compact manifold,
however we know that

Hig (8" x 8%) = span{[1], [wg1], [wsz], [wer A wsz]}

and wg2 has degree 2. v
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Example. In general,
H*(U(n)) = A[ZL’I, L3yeeny .%'Qn_l]

where xop_1 := [Ogx_1] where Ogj_; are the Maurer-Cartan forms, which
we defined as follows: Let g : U(n) — M,(C) be the natural inclusion.
Then, dg and g~ 'dg are both matrices of 1-forms. We define

Ogp_1 1= tr((g_ldg)%_l)

Holomorphic Manifolds:

Definition. A holomorphic manifold is a manifold with an atlas of
charts to C™, such that the transition maps are holomorphic. That is, M
together with an atlas (U,, ¢o) where each ¢, : Uy — ¢0(Uy) C C" is a
homeomorphism and the transition maps

Pa,B = Pa © 8051 : SOﬁ(Ua N Uﬁ) — (pa(Ua N U,B)
are holomorphic. Notice that holomorphic manifolds are orientable:

det gigy, 5 = | det Cgp'aﬂ|2 >0

Set i:=+/—1. Coordinates is C" are

A=t 4yt 2" =2 + iy

Define 1-forms
dz! = dz' +idy',. .., dz" = da™ + idy™.
together with their dual elements

D = (0 —10,1), Do = (e — D)

Similarly, if o
dz! =dz' —idy',. .., dz" = da™ — idy™.
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their dual elements are

1 1
aZT: 5(8931 +i8y1),... ,8?: 5(8xn +18yn)

Definition. A function f : C* — CF is holomorphic iff O5f = 0 for all
1<5<n. A
Definition. For f : C" — CF, define operators 0,0 and d by

Of =3 0.ufds, Of =) 05fdsd, df =0f+0f
j=1 j=1
Notice that f is holomorphic iff 9f = 0. A
FI={1<ii<...<ip<n}and K ={1 <k <...<ky<n}, we put

dzl =dz A+ Ad2™,  d2K =dzFi A A dzRa

Let AP9 := span{dz! A dzK : |I| = p,|K| = ¢}. Then, we extend the
opereators define above as

0 (3 frucdz" nd=F) =3 0fs iz’ A dzF
] (Z f]J(dZI A dz7> = ngLKdZI A dzT(
and we get 0 : A9 —: APT1L4 while 0 : AP4 —: AP4H1 Further, notice that

82 =0,8" =0 and 99 + 50 = 0.

Definition. Define J to be an endomorphism of the tangent bundle so that
forany 1 < j <n.

J(0y) =0

i and - J(0y;) = —0,

Notice that J? = —id and that J(8,;) = i8,; while J(85) = —id;;. The

map J gives the complex structure. A

Definition. Let g be a Riemannian metric on M and J a complex structure
on M. The metric g is said to be Hermitian if for any X,Y € I'(T'M),

g(JX,JY) =g(X.Y)
That is, if J*g = g. A

Lemma. If gg is an arbitrary metric, then g := go + J*go is Hermitian.
Thus, given a complex structure, Hermitian metrics always exist.
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Remark. Suppose g is Hermitian. Extending g to be complex bilinear we
easily find that

Q
L
@

I
Q
—
2

Q
QD
isy
~—

I

Moreover,

9o = 9(0:,055) = 9(0:0,05) = Ga

v

Definition. Suppose g is Hermitian. We define Q by Q(X,Y) := g(JX,Y).
It’s easily checked that Q(X,Y) = —Q(Y, X). So Q is a 2-form. In fact, we
have

Q=i (g,5d:"d:F)
A

Definition. We say that M is Kaler if df2 = 0. In this case, in local
coordinates we have

Q= Z da® A dy¥
k=1
A

Lemma. If N is a holomorphic submanifold of a Kdler manifold, then N
1s Kaler.

Theorem. Let M be a compact Kiler manifold and x = [w] € Hiz(M).
Then, z™ # 0 and the groups Hig (M), Hig(M),..., H3%(M) are all non

Z€ero.
Example. For n > 2, S1 x 52"~ is a complex compact manifold. However,

we know that
Hig(S' x §*"1) =0,

and therefore S x S27"~1 is not Kaler. v

Theorem. If M is a Kdler manifold, then € is harmonic.

Example. CP" is Kéler. v
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