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1 Fall 2017: Math 637

1.1 Theorems and Definitions.

Definition. Suppose M is a topological space. We say that M is a topo-
logical manifold of dimension n or a topological n-manifold if it has
the following properties:

• M is a Hausdorff space, i.e. for every pair of distinct points p, q ∈M ,
there are disjoint open subsets U, V ⊂M such that p ∈ U and q ∈ V .

• M is second-countable, i.e. there exists a countable basis for the topol-
ogy of M .

• M is locally Euclidean of dimension n, i.e. each point of M has a
neighborhood that is homeomorphic to an open subset of Rn. N

Definition. Let M be a topological n-manifold. A coordinate chart (or
just a chart) on M is a pair (U,ϕ) where U is an open subset of M and
ϕ : U → ϕ(U) is a homeomorphism from U to an open subset ϕ(U) ⊂ Rn.

Given a chart (U,ϕ), we call the set U a coordinate domain. The map ϕ is
called a (local) coordinate map, and the component functions x1, . . . , xn

of ϕ, defined by
ϕ(p) = (x1(p), . . . , xn(p)),

are called local coordinates on U . N

Definition. Let M be a topological n-manifold. If (U,ϕ) and (V, ψ) are
two charts such that U ∩ V 6= ∅, the composite map

ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V )

is called the transition map from ϕ to ψ.

Two charts (U,ϕ) and (V, ψ) are said to be smoothly compatible if either
U ∩ V = ∅ or the transition map ψ ◦ ϕ−1 is a diffeomorphism.

An atlas for M is a collection of charts whose domains cover M . An atlas
A is called a smooth atlas if any two charts in A are smoothly compatible
with each other. A smooth atlas A on M is maximal if it is not properly
contained in any larger smooth atlas.

A smooth manifold is a pair (M,A) where M is a topological manifold
and A is a maximal smooth atlas. N
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Definition. Suppose M is a smooth n-manifold, k is a nonnegative integer,
and f : M → Rk is any function. We say that f is a smooth function if
for every p ∈ M , there exists a smooth chart (U,ϕ) for M whose domain
contains p and such that the composite function f ◦ ϕ−1 is smooth on the
open subset ϕ−1(U) ⊆ Rn.

When k = 1, we denote by C∞(M) the space of all real valued smooth
functions on M . N

Definition. Suppose M is a smooth n-manifold and p ∈M . A derivation
at p is a linear map w : C∞(M)→ R such that

w(f · g) = w(f)g(p) + f(p)w(g)

for any f, g ∈ C∞(M). We denote the space of all derivations at p by TpM ,
this is the tangent space to M at point p. N

Theorem. Suppose M is a smooth n-manifold and p ∈ M . Let (U,ϕ) be
a chart such that p ∈ U with local coordinates (x1, . . . , xn). Then, the map
∂
∂xi

∣∣
p

: C∞(M)→ R given by

∂

∂xi

∣∣∣
p
(f) :=

∂(f ◦ ϕ−1)

∂xi
(ϕ(p))

is a derivation at p. Furthermore, TpM ∼= Rn and any derivation at p has
the form

n∑
i=1

ai
∂

∂xi

∣∣∣
p

for some a1, . . . , an ∈ R.

Definition. Let M , N be smooth manifolds, and let F : M → N be any
map. We say that F is a smooth map if for every p ∈M , there exist smooth
charts (U,ϕ) containing p and (V, ψ) containing F (p) such that F (U) ⊆ V
and the composite map ψ ◦ F ◦ ϕ−1is smooth from ϕ(U) to ψ(V ). N

Definition. Let M , N be smooth manifolds. If F : M → N is smooth and
p ∈M , we define the differential dF (p) : TpM → TF (p)N as

[dF (p)(w)](g) = w(g ◦ F )

for any w ∈ TpM and g ∈ C∞(N). N

Lemma. Let M , N and P be smooth manifolds and F : M → N smooth.
If p ∈M , then
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• dF (p)(w) is indeed a derivation at F (p).

• dF (p) : TpM → TF (p)N is a linear map.

• If G : N → P is smooth, then

d(G ◦ F )(p) = dG(F (p)) ◦ dF (p)

• dIdM (p) = IdTpM

• If F is a diffeomorphism, then dF (p) is an isomorphism and

[dF (p)]−1 = dF−1(p)

Definition. Let M , N be smooth manifolds and F : M → N a smooth
map. Given q ∈ N , we say that q is a regular value of F if for every point
p ∈ F−1({q}) we have dF (p) : TpM → TF (p)N is a surjective linear map N

Theorem. (Regular Value Theorem) Suppose M is a smooth m-manifold
and N a smooth n-manifold. Let F : M → N be smooth and let q ∈ N be
a regular value of F . Then, F−1({q}) is a smooth submanifold of M with
dimension m− n.

Definition. Let M be a topological manifold. A real vector bundle
of rank k over M is a topological space E together with a surjective
continuous map π : E →M such that

(i) For each p ∈M , the fiber Ep = π−1({p}) is a k-dimensional real vector
space.

(ii) For each p ∈ M , there is U ⊂ M with p ∈ U and a homeomorphism
Φ : π−1(U) → U × Rk, called a local trivialization of E over U , such
that

. if πU : U ×Rk → U is the canonical projection, then πU ◦Φ = π.

. For each q ∈ U , Φ
∣∣
Eq

: Eq
∼→ {q} × Rk ∼= Rk is a vector space

isomorphism

If M,E are smooth manifolds, π is smooth and the maps Φ can be chosen
to be diffeomorphisms, then E is called a smooth vector bundle.

A line bundle over M is a vector bundle of rank 1. N
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Definition. A real vector bundle (E, π) of rank k over M is said to be
trivial if there is a global trivialization, that is if there is a homeomorphism
Φ : E

∼→ M × Rk. If (E, π) is a smooth vector bundle and the global
trivialization is a diffeomorphism, we say that (E, π) is smoothly trivial. N

Definition. Consider a real vector bundle (E, π) of rank k over M . A
section of E is a continuous map σ : M → E such that π ◦ σ = idM . A
local section of E is a continuous map σ : U → E such that π ◦ σ = idU
for some open set U ⊂ M . If E is a smooth vector bundle and the map σ
is smooth, then we get a smooth (local) section. We usually denote the
space of smooth sections of E as Γ(E). N

Definition. Consider a real vector bundle (E, π) of rank k over M and U ⊂
M an open subset. A r-tuple of local sections over U , say (σ1, . . . , σr), is said
to be linearly independent if for each p ∈ U , the r-tuple (σ1(p), . . . , σr(p))
is linearly independent in Ep. Similarly, (σ1, . . . , σr) is said to span E if for
each p ∈ U , the r-tuple (σ1(p), . . . , σr(p)) span Ep.

A local frame for E over U is an ordered k-tuple (σ1, . . . , σk) of linearly
independent local sections over U that span E; thus (σ1(p), . . . , σk(p)) is a
basis for the fiber Ep for each p ∈ U . It is called a global frame if U = M .
If E is a smooth vector bundle, a local or global frame is a smooth frame
if each σi is a smooth section. N

Theorem. Every smooth (local) frame for a smooth vector bundle is asso-
ciated with a smooth (local) trivialization in the following way:

• If s1, . . . , sk : U → E is a frame over U ⊆ M , we get a trivialization
Φ : π−1(U)→ U × Rk by

Φ(x) := (π(x), λ1(x), . . . , λk(x))

where x = λi(x)si(π(x)) ∈ Eπ(x).

• Conversely, if Φ : π−1(U) → U × Rk is a trivialization and e1, . . . , ek
is the standard basis for Rk, we define sections σi : U → E by

σi(p) := Φ−1(p, ei)

Then, s1, . . . , sk is a frame over U .

Corollary. A smooth vector bundle is smoothly trivial if and only if it admits
a smooth global frame.
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Definition. Let M be a smooth n-manifold. We define the tangent bundle
of M , denoted by TM , as follows

TM =
∐
p∈M

TpM = {(p, w) : w ∈ TpM}

N

Lemma. Let M be a smooth n-manifold. The tangent bundle TM together
with the natural projection map π : TM →M , is a real smooth vector bundle
of rank n over M .

Definition. Let M be a smooth n-manifold. A vector field is a section
of the tangent bundle TM . That is, a vector field is a continuous map
X : M → TM so that π ◦X = idM . N

Definition. Let M be a smooth n-manifold and (U, xi) be any smooth
coordinate chart. We define a map ∂

∂xi
: M → TM by

∂

∂xi
(p) :=

(
p,

∂

∂xi

∣∣∣
p

)
N

Theorem. Let M be a smooth n-manifold and (U, xi) be any smooth coor-
dinate chart. Then, ( ∂

∂x1
, . . . , ∂

∂xk
) is a local frame for TM over U .

Definition. Let M be a smooth n-manifold and (U, xi) be any smooth
coordinate chart. If X : M → TM is a vector field and p ∈ U , we have

X(p) =

(
p,Xi(p)

∂

∂xi

∣∣∣
p

)
The n smotth maps Xi : U → R are called the component functions of
X in the given chart. In this case, we abuse notation and say that X can
be written locally as

X = Xi ∂

∂xi
,

so that X(p) is representing the element Xi(p) ∂
∂xi

∣∣∣
p
∈ TpM . N

Definition. Let M be a smooth n-manifold. A smooth vector field X on
M can be alternatively defined as a linear map X : C∞(M)→ C∞(M) such
that X(fg) = X(f)g + fX(g) for any f, g ∈ C∞(M). Thus, if for a smooth
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coordinate chart (U, xi) we have X = Xi ∂
∂xi

, then for any f ∈ C∞(M), the
function X(f) : M → R is given by

X(f)(p) = Xi(p)
∂

∂xi

∣∣∣
p
(f)

N

Lemma. Let M be a smooth n-manifold. The space of smooth vector fields,
denoted by Γ(TM) is a Lie algebra. That is, for any X,Y ∈ Γ(TM) the Lie
bracket [X,Y ] := XY − Y X is again a smooth vector field.

Lemma. Let M be a smooth n-manifold and X,Y ∈ Γ(TM) with coor-
dinate expressions X = Xi ∂

∂xi
, Y = Y i ∂

∂xi
in terms of some smooth local

coordinates (xi) for M . Then [X,Y ] ∈ Γ(TM) has the following coordinate
expression:

[X,Y ] =
(
X(Y i)− Y (Xi)

) ∂
∂xi

Theorem. (Properties of the Lie Bracket). The Lie bracket satisfies the
following identities for all X,Y, Z ∈ Γ(TM)

• BILINEARITY: For a, b ∈ R,

[aX+bY, Z] = a[X,Z]+b[Y,Z] and [X, aY +bZ] = a[X,Y ]+b[X,Z]

• ANTISYMMETRY:
[X,Y ] = −[X,Y ]

• JACOBI IDENTITY:[
X, [Y,Z]

]
+
[
Y, [Z,X]

]
+
[
Z, [X,Y ]

]
= 0

• for f, g ∈ C∞(M),

[fX, gY ] = fg[X,Y ] + (fX(g))Y − (gY (f))X

Definition. Let M be a smooth n-manifold. A Riemannian metric on
M is a family of (positive definite) inner products

g = {gp : TpM × TpM −→ R}p∈M ,

such that, for all smooth vector fields X,Y : M → TM , the map

p 7→ gp(X(p), Y (p))
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defines a smooth function M → R.

Given local coordinates (xi) we have

gij(p) := gp

(
∂

∂xi
(p),

∂

∂xj
(p)

)
Since ( ∂

∂x1
, . . . , ∂

∂xn ) is a local frame for TM , we also say that

gij = g

(
∂

∂xi
,
∂

∂xj

)
so we may think of g as a smooth positive definite inner product on Γ(TM).

A smooth manifold M together with a given Riemannian metric g is called
a Riemannian manifold and denoted by (M, g). N

Theorem. (Existence of Riemannian Metrics). Every smooth manifold
with or without boundary admits a Riemannian metric.

Remark. Let σ : [a, b]→M be a smooth parametrized curve on a smooth
n-manifold M . At any time t ∈ [a, b], the velocity σ̇(t)of σ acts on functions
by

σ̇(t)f =
d

dt
(f ◦ σ)(t)

If we write the local coordinate representation of σ as σ(t) = (σ1(t), . . . , σn(t)),
then σ̇(t) = σ̇i(t) ∂

∂xi
(A dot always denotes the ordinary derivative with re-

spect to t.) Thus, we think of σ̇(t) as an element of Tσ(t)M . H

Definition. Let (M, g) be a connected Riemannian manifold and let σ :
[a, b]→M be a smooth parametrized curve in M . The length of σ is defined
as

L(σ) :=

∫ b

a

√
gσ(t)

(
σ̇(t), σ̇(t)

)
dt

The distance function dg : M ×M → R is defined by

dg(p, q) := inf {L(σ) : σ ∈ C∞([0, 1],M), σ(0) = p, σ(1) = q}

N

Theorem. Let (M, g) be a connected Riemannian manifold. Then,

• (M,dg) is a metric space.
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• The topology induced by dg is the same as the original topology on M .

• If dg is complete, then between any two points in M , there exists a
curve that minimizes the distance.

Definition. Let M be a smooth manifold and U = {Uα}α∈A an open cover
of M indexed by a set A. A smooth partition of unity subordinated to
U is a collection {φα}α∈A in C∞(M) such that

• 0 ≤ φα(p) ≤ 1 for all p ∈M and all α ∈ A.

• supp(φα) := {p ∈M : φα(p) 6= 0} ⊂ Uα

• The family of supports {supp(φα)}α∈A is locally finite, meaning that
every point has a neighborhood that intersects supp(φα) for only finitely
many values of α

•
∑

n φα∈A(p) = 1 for all p ∈M .

N

Theorem. (Existence of Partitions of Unity). Suppose M is a smooth man-
ifold, and U is any indexed open cover of M . Then there exists a smooth
partition of unity subordinate to U .

Theorem. Suppose M is a smooth manifold, U = {Uα}α∈A is any indexed
open cover of M , and let gα be a Riemannian metric on Uα. If {φα}α∈A is
a smooth partition of unity subordinated to U , then∑

α∈A
φαgα

is a Riemannian metric on M .

Definition. Let M be a smooth manifold. A connection on M is a map
∇ : Γ(TM)× Γ(TM)→ Γ(TM) (we put ∇XY := ∇(X,Y )) such that

• ∇ is bilinear.

• ∇fXY = f∇XY for any X,Y ∈ Γ(TM) and f ∈ C∞(M).

• ∇XfY = X(f)Y + f∇XY for any X,Y ∈ Γ(TM) and f ∈ C∞(M).

N
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Theorem. Let ∇ be a connection on a smooth manifold M . Then ∇ is
local, that is for X,Y ∈ Γ(TM) we have that

• If U ⊂M is such that X
∣∣
U

= 0, then (∇XY )
∣∣
U

= 0

• If V ⊂M is such that Y
∣∣
V

= 0, then (∇XY )
∣∣
V

= 0

Remark. From now on, the following the convenient notation will be used

∂xi :=
∂

∂xi

H

Definition. Since any connection ∇ is local, in local coordinates (U, (xi))
we have

∇∂xi∂xj = Γij
k∂xk

The smooth functions Γij
k : U → R are known as Christoffel symbols of

∇ with respect to the frame (∂x1 , . . . , ∂xn). N

Theorem. Suppose M is a smooth manifold, U = {Uα}α∈A is any indexed
open cover of M , and let α∇ be a connection on Uα. If {φα}α∈A is a smooth
partition of unity subordinated to U , then∑

α∈A
φα

α∇

is a connection on M .

Definition. Let M be a smooth manifold, g a Riemannian metric on M and
∇ a connection on M . We define rg : Γ(TM)×Γ(TM)×Γ(TM)→ C∞(M)
by

rg(X,Y, Z) := X
(
g(Y,Z)

)
− g(∇XY,Z)− g(Y,∇XZ)

If rg ≡ 0, we say that ∇ is Riemannian. N

Definition. Let M be a smooth manifold and ∇ a connection on M . We
define the torsion tensor T : Γ(TM)× Γ(TM)→ Γ(TM) by

T (X,Y ) := ∇XY −∇YX − [X,Y ]

If T ≡ 0, we say that ∇ is torsion free. N
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Lemma. Both rg and T are tensorial, that is for any f ∈ C∞(M)

rg(fX, Y, Z) = rg(X, fY, Z) = rg(X,Y, fZ) = frg(X,Y, Z)

T (fX, Y ) = T (X, fY ) = fT (X,Y )

Corollary. Both rg and T are local.

Lemma. On local coordinates (xi), torsion free is equivalent to Γij
k = Γji

k

for all i, j, k.

Theorem. Let M be a smooth manifold and ∇ a connection on M . The
following are equivalent

(i) ∇ is torsion free.

(ii) Given any point p ∈ M , there exist local coordinates centered at p so
that Γij

k(p) = 0.

Theorem. Let (M, g) be a Riemannian manifold. Then, there exists a
unique connection called the Levi-Civita connection so ∇ is torsion free
and Riemannian.

Definition. Let (M, g) be a Riemannian manifold and ∇ a connection on
M . We define the Christoffel symbols of the second kind as

Γijk := g(∇∂xi∂xj , ∂xk)

for local coordinates (xi). N

Lemma. Let (M, g) be a Riemannian manifold and ∇ a connection on M .
Then,

Γij
k = gklΓijl

where (gkl) is the inverse matrix of (gij)

Remark. From now on, the following the convenient notation will be used

gij/k := ∂xkgij

H

Lemma. Torsion free is equivalent to Γijk = Γjik for all i, j, k. Riemannian
connection is equivalent to Γijk + Γikj = gjk/i

11



Theorem. Let (M, g) be a Riemannian manifold and ∇ the Levi-Civita
connection. Then, the Kozul formula holds, that is

Γijk =
1

2

(
gjk/i + gik/j − gij/k

)
Example. Take M = Rn and let X = Xi∂xi , Y = Y i∂xi be vector fields on
Rn. Then, the euclidian connection given by

∇e
XY := X(Y i)∂xi = Xj∂xj (Y

i)∂xi

is the Levi-Civita connection for Rn. Furthermore, in this case Γij
k = 0 for

all i, j, k. H

Example. Let S ⊂ R3 be a surface (i.e. a smooth 2-manifold). If X,Y
are vector fields in R3 that are tangent to S, then ∇e

XY is not necessarily
tangent to S. However, if for any point p ∈ S, πS : TpR3 → TpS is the
orthogonal projection back to the surface, then πS(∇e

XY ) is tangent to S.

In fact, we have that πS ◦ ∇e is the Levi-Civita connection of S. H

Definition. Let (M, g) be a Riemannian manifold and ∇ the Levi-Civita
connection. A smooth curve σ : [a, b]→M is a geodesic if

∇σ̇σ̇ = 0

N

Theorem. Let (M, g) be a Riemannian n-manifold and ∇ the Levi-Civita
connection. Consider a smooth curve σ : [a, b] → M with local coordinate
representation given by σ(t) = (x1(t), . . . , xn(t)) (thus σ̇ = ẋi∂xi). Then the
geodesic equation above is

ẍk +
∑
ij

ẋiẋjΓij
k = 0

for all k = 1, . . . , n.

Theorem. Let (M, g) be a Riemannian n-manifold, ∇ the Levi-Civita con-
nection, and σ : [a, b] → M a smooth curve. Suppose that M ⊂ Rm for
some m and let ∇e be the euclidean connection in Rm. Then, if for any
point p ∈M , πM : TpRm → TpM is the ortogonal projection back to M , we
have

∇σ̇σ̇ = πM (∇eσ̇σ̇) = πM σ̈

and therefore σ is a geodesic if and only if σ̈ ⊥M .
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Theorem. (Geodesics travel at constant velocity) Let (M, g) be a Rieman-
nian n-manifold, ∇ the Levi-Civita connection, and σ : [a, b] → M a

geodesic. Then, d
dtg(σ̇(t), σ̇(t))

R
= 2g(∇σ̇σ̇, σ̇) = 0.

Lemma. Let (M, g) be a Riemannian n-manifold, ∇ the Levi-Civita con-
nection, and γ : [a, b]→ M a smooth curve. Then, γ is an umparametrized
geodesic iff

∇γ̇ γ̇ = αγ̇

for some smooth function α : [a, b]→ R.

Lemma. Let (M, g) be a Riemannian manifold and σ : I →M a geodesic.
Then if λ > 0 is such taht σ̃(t) := σ(λt) is defined, σ̃ is also a geodesic.

Definition. Let (M, g) be a Riemannian manifold. M is said to be geodesi-
cally complete if all geodesics extend for infinite time. N

Theorem. Let (M, g) be a Riemannian manifold, ∇ the Levi-Civita con-
nection, and suppose that M is compact. Then, M is geodesically complete.

Lemma. Let (M, g) be a Riemannian n-manifold. If p ∈M and w ∈ TpM .
There exists a unique geodesic σw : I →M such that

• [0, 1] ⊂ I

• σw(0) = p

• σ̇w(0) = w

Furthermore, if ε > 0 and the geodesic σv is defined for |t| < ε, then for
λ > 0 the curve γ = σλv is a geodesic defined for |t| < ε/λ and γ(t) = σv(λt)
for |t| < ε/λ.

Remark. Intuitively, the second part of the previous lemma means that
since the speed of a geodesic is constants we an go over its trace within a
prescribed time by adjusting our speed appropriately. H

Definition. Let (M, g) be a Riemannian manifold. If p ∈M and w ∈ TpM
is non zero, we set

expp(w) := σw(1) and expp(0) := p

13



Geometrically, the construction corresponds to laying off (if possible) a
length equal to ‖w‖gp := gp(w,w) along the geodesic that passes trough
p in the direction of v; the point of M thus obtained is denoted by expp(w).
N

Theorem. Let (M, g) be a Riemannian manifold. Given p ∈ M there is
ε > 0 such that the map expp : Bε(0) → M is a diffeomorphism. Here
Bε(0) = {w ∈ TpM : ‖w‖gp < ε}. Furthermore, expp(tw) = σw(t) and
d expp(0) : TpM → TpM is the identity map.

Corollary. Let (M, g) be a connected Riemannian manifold. For p ∈ M
and w ∈ TpM , we let q := expp(w). Then, the curve γ : [0, 1]→M given by
γ(t) := expp(tw) is the geodesic from p to q of length ‖w‖gp. Furthermore,
if σ is any curve from p to q, then L(σ) ≥ L(γ), and equality holds iff σ is
a reparametrization of γ. Also,

dg(p, q) = ‖w‖gp

Theorem. (Hopf Rinow) Let (M, g) be a connected Riemannian manifold.
Then the following statements are equivalent:

(1) (M,dg) is a complete metric space.

(2) M is geodesically complete.

(3) All geodesics through given base point extend for infinite time

Furthermore, any of these equivalent conditions imply that for any two points
p, q ∈M there exists a geodesic σ from p to q such that L(σ) = dg(p, q).

Definition. Let M,N be smooth manifolds and F : M → N a smooth
map. The push forward dF : TM → TN is defined by

dF (p, w) := (F (p), [dF (p)](w))

The pull back F ∗ : C∞(N)→ C∞(M) is given by

F ∗(h) := h ◦ F

for any h ∈ C∞(N) N

Definition. Let (M, gM ) and (N, gN ) be two Riemannian manifolds, and
F : M → N be a diffeomorphism. Then, F is called a Riemannian isom-
etry, if

gM = F ∗gN
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or pointwise

gMp (u, v) = gNF (p)(dF (p)(u), dF (p)(v)) ∀p ∈M,∀u, v ∈ TpM.

Moreover, a smooth map F : M → N is called a local isometry at p ∈ M
if there is a neighbourhood U ⊂ M , p ∈ U , such that F : U → F (U) is a
diffeomorphism satisfying the previous relation. N

Lemma. Let (M, gM ) and (N, gN ) be two Riemannian manifolds. If F :
M → N is a Riemannian isometry, then F : (M,dgM ) → (N, dgN ) is an
isometry of the underlying metric space. That is, for any p, q ∈M

dgM (p, q) = dgN (F (p), F (q))

Conversely, if F is an isometry of the underlying metric space and bijective,
then F is a Riemannian isometry.

Definition. A Riemannian manifold (M, g) is said to be homogeneous,
if given any p, q ∈M there is a Riemannian isometry Φ : M →M such that
Φ(p) = q. N

Theorem. Let (M, g) be homogeneous. Then M is geodesically complete.

Theorem. A Riemannian manifold (M, g) and Φ : M →M a Riemannian
isometry. Let F = {p ∈M : Φ(p) = p} the fixed point set of Φ. Then F is a
smooth submanifold of M that is totally geodesic. That is, for all geodesics
σ such that σ(0) ∈ F , we have σ(t) ∈ F for all t.
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2 Winter 2018: Math 638

2.1 Theorems and Definitions.

Definition. Let (M, g) be a Riemannian manifold and ∇ the Levi-Civita
connection. For X,Y ∈ Γ(TM), we set

R(X,Y ) := ∇X∇Y −∇Y∇X −∇[X,Y ]

Thus, R(X,Y ) : Γ(TM)→ Γ(TM). For X,Y, Z,W ∈ Γ(TM), we set

R(X,Y, Z,W ) := g
(
R(X,Y )Z,W

)
N

Lemma. (Curvature Properties)

(i) The map (X,Y, Z) 7→ R(X,Y )Z is multilinear and tensorial.

(ii) R(X,Y ) = −R(Y,X).

(iii) The Bianchi identity holds, that is

R(X,Y )Z +R(Z,X)Y +R(Y,Z)X = 0

(iv) R(X,Y ) is skew symmetric, that is

g
(
R(X,Y )Z,W

)
= −g

(
Z,R(X,Y )W

)
.

Equivalently R(X,Y, Z,W ) = −R(X,Y,W,Z).

(v) R(X,Y, Z,W ) = R(Z,W,X, Y ).

(vi) The identities above are the only universal curvature identities for the
Levi-Civita connection, all others are consequences of these ones.

Definition. Let (M, g) be a Riemannian n-manifold and ∇ the Levi-Civita
connection. If (U, xi) are local coordinates we set

Rijkl := R(∂xi , ∂xj , ∂xk , ∂xl) = g
(
R(∂xi , ∂xj )∂xk , ∂xl

)
for all i, j, k, l ∈ {1, . . . , n}. N

16



Theorem. Let (M, g) be a Riemannian n-manifold

and ∇ the Levi-Civita connection. If (U, xi) are local coordinates around
p ∈ U such that

gij/k(p) = 0

for all i, j, k ∈ {1, . . . , n}, then

Rijkl(p) =
1

2

(
gjl/ik + gik/jl − gil/jk − gjk/il

)
(p)

for all i, j, k, l ∈ {1, . . . , n}.

Lemma. (Curvature Symmetries)

(i) Rijkl = −Rjikl

(ii) Rijkl +Rkijl +Rjkil = 0

(iii) Rijkl = −Rijlk

(iv) Rijkl = Rklij

(v) These are the only universal curvature symmetries. The rest are al-
gebraic consequences of these, that is, given a collection Aijkl sat-
isfying (i)-(iv) above, there exists a Riemannian metric g such that
Rijkl(p) = Aijkl.

Definition. Let (M, g) be a Riemannian n-manifold. The scalar curva-
ture is given by

τ := gilgjkRijkl

where (gkl) is the inverse matrix of (gij). The Gaussian curvature is τ
2 . N

Definition. Let (M, g) be a Riemannian manifold. We define

ρ(X,Y ) := tr(Z 7→ R(Z,X)Y )

The Ricci tensor is then given on local coordinates (xi) by

ρij := ρ(∂xi , ∂xj ) = gklRiklj

N

Remark. Notice that

trg(ρ) = gijρij = gijgklRiklj = τ

H
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Theorem. ( Myers) Let (M, g) be a geodesically complete and connected
Riemannian manifold. Suppose there exist ε > 0 such that ρ(X,X) ≥
εg(X,X) for all vector fields X (i.e. the Ricci tensor is uniformly posi-
tive). Then M is compact and the fundamental group π1M is finite.

Definition. Suppose M is a hypersurface, that is an n-manifold embedded
in Rn+1 with Riemannian metric given by the induced metric. Take local
coordinates (u1, . . . , un) and local parametrization F : U → Rm

F (u1, . . . , un) = (x1, . . . , xn+1)

such that rank( ∂x
i

∂uj
) = n. The first fundamental form is the matrix given

by
gij = ∂uiF · ∂ujF ·

The second fundamental form is defined as

L(X,Y ) = (∇eXY ) ·N

where X,Y ∈ Γ(TM), ∇e is the euclidean connection in Rn+1 and N is the
unit normal to M (two choices of orientation ±N) N

Lemma. The second fundamental form is symmetric and tensorial. That
is, for any X,Y ∈ Γ(TM) and f ∈ C∞(M) we have

• L(X,Y ) = L(Y,X)

• L(fX, Y ) = L(X, fY ) = fL(X,Y )

Furthermore, if Z,W ∈ Γ(TM), then

R(X,Y, Z,W ) = L(X,W )L(Y,Z)− L(X,Z)L(Y,W )

Example. Suppose S ⊂ R3 is a surface with local parametrization given
by T (u1, u2). Then, the first fundamental form is given by

gij := ∂uiT · ∂ujT

The second fundamental form is given by

Lij := ∂2
uiujT ·N,

18



where N is the unit vector normal to ∂u1T and ∂u2T . Further, thanks to
Gauss’s Teorema Egregium, it follows that the Gaussian curvature is

K =
det(Lij)

det(gij)
=
L11L22 − (L12)2

g11g22 − (g12)2

H

Theorem. Let (M, g) be a Riemannian n-manifold. Then,

vol(BM
r (p))

vol(BRn
r (0))

= 1− τ(p)

6(n+ 2)
r2 +O(r4)

Definition. Let (M, g) be a Riemannian manifold. If {X,Y } is the basis
of a 2-plane Π in Γ(TM), we define the sectional curvature by

R(Π) :=
R(X,Y, Y,X)

g(X,X)g(Y, Y )− g(X,Y )2
=

g
(
R(X,Y )Y,X

)
g(X,X)g(Y, Y )− g(X,Y )2

This definition is independent of the chosen basis, it only depends on Π ⊂
Γ(TM). N

Theorem. Let (M, g) be a (pseudo)Riemannian n-manifold with constant
sectional curvature, that is R(Π) = c for any 2-plane Π ⊂ Γ(TM). Then,

• if c = 0, (M, g) is locally isometric to Rn with flat metric.

• if c > 0, (M, g) is locally isometric to the sphere of radius 1√
c

Sn
(

1√
c

)
:=

{
x ∈ Rn+1 : ‖x‖2 =

1

c

}
• if c < 0, (M, g) is locally isometric to the pseudo-sphere of radius 1√

−c

Sn
(

1√
−c

)
:=

{
x ∈ Rn+1 : x2

1 + . . .+ x2
n − x2

n+1 =
1

c

}
Lemma. Let (M, g) be a (pseudo)Riemannian n-manifold with constant
sectional curvature c. If {e1, . . . , en} is an orthonormal basis for TpM , then

R(ei, ej , ek, el) = c (δilδjk − δikδjl)

That is, the only non zero curvatures are R(ei, ej , ej , ei) = c and R(ei, ej , ei, ej) =
−c and the induced symmetries.
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Definition. Let (M, g) be a Riemannian manifold and ∇ the Levi-Civita
connection. For X ∈ Γ(TM), we define the Jacobi operator J(X) :
Γ(TM)→ Γ(TM) by

J(X)Y := R(Y,X)X

N

Lemma. • J(X)X = 0 for any X ∈ Γ(TM).

• J(X) is self adjoint, that is for any Y,Z ∈ Γ(TM)

g(J(X)Y, Z) = g(Y, J(X)Z)

Definition. Let σ : I →M a geodesic. If Y is a vector field we set

Ÿ := ∇σ̇∇σ̇Y

Then, we say that Y is a Jacobi vector field along σ if

Ÿ + J(σ̇)Y = 0

N

Example. Suppose T : [a, b]× [0, ε]→M is so that the curves s 7→ T (s, t)
are geodesics for all t. Then Y := ∂

∂t are Jacobi vecotor fields, that is

Ÿ + J

(
∂

∂s

)
Y = 0

H

Lemma. Let σ : I →M a geodesic and p := σ(0) ∈M .

• Consider Y a Jacobi vector fields along σ. If Y (0) ⊥ σ̇(0) and Ẏ (0) ⊥
σ̇(0). Then Y (t) ⊥ σ̇(t) for all t.

• If Y,Z are Jacobi vector fields along σ, so is aY + bZ for a.b ∈ R.

• σ̇(t) and tσ̇(t) are Jacobi vector fields along σ.

• Given w0, w1 ∈ TpM , there exist a unique Jacobi vector field Y along
γ such that Y (0) = w0 and Ẏ (0) = w1.
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Theorem. Let (M1, g1) and (M2, g2) be Riemannian n-manifolds both with
constant sectional curvature c. If Φ : Tp1M1 → Tp2M2 is an isometry for
some p1 ∈ M1 and p2 ∈ M2, then there exist an isometry from a neighbor-
hood of p1 to a neighborhood of p2.

Corollary. Let (M, g) be a Riemannian manifold with constant sectional
curvature, that is R(Π) = c for any 2-plane Π ⊂ Γ(TM). Then,

• if R(Π) = 0, (M, g) is locally isometric to Rn with flat metric.

• if R(Π) = c, (M, g) is locally homogeneous.

Definition. Let (M, g) be a Riemannian manifold. We define ∇R as fol-
lows

(∇XR)(Y, Z)W = ∇X

(
R(Y,Z)W

)
−R(∇XY,Z)W−R(Y,∇XZ)W−R(Y,Z)∇XW

N

Lemma. Let (M, g) be a Riemannian manifold. Then ∇R is a tensor, that
is, for any f ∈ C∞(M)

(∇fXR)(Y, Z)W = (∇XR)(fY, Z)W = (∇XR)(Y, fZ)W = (∇XR)(Y, Z)fW = f(∇XR)(Y, Z)W

Thus, (∇fXR)(Y,Z)W )(p) only depends on X(p), Y (p), Z(p),W (p).

Theorem. Let (M1, g1) and (M2, g2) be Riemannian n-manifolds. Suppose
that ∇R1 ≡ 0, ∇R2 ≡ 0 and that there is an isometry Φ : Tp1M1 → Tp2M2

is an isometry for some p1 ∈M1 and p2 ∈M2, such that

R2(ΦX,ΦY,ΦZ,ΦW ) = R1(X,Y, Z,W ),

that is Φ∗R2 = R1. Then, there is a neighborhood U of p and a local isometry
φ : U → U

Theorem. Let (M, g) be a Riemannian manifold. The following are equiv-
alent

(i) ∇R ≡= 0

(ii) For any p ∈ M , there is a neighborhood U of p and a local isometry
φ : U → U such that φ(p) = p and φ∗ = −idTpM

Definition. Let (M, g) be a Riemannian manifold. If any of the equivalent
conditions in the theorem above is satisfied, (M, g) is said to be a local
symmetric space N
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Corollary. If M has constant sectional curvature, then M is a local sym-
metric space.

Theorem. Let M be a geodesically complete and connected Riemannian
manifold. If R(Π) ≤ 0, then, expp : TpM → M is a covering projection
(i.e. local diffeomorphism). Furthermore, if M is simply connected, expp :
TpM →M is a diffeomorphism.

Theorem. Let M be a simply connected Riemannian compact n-manifold
such that R(Π) > 0. Define

P (M) :=
supΠR(Π)

infΠR(Π)

Then,

• If P (M) = 1, then M has constant sectional curvature and is isometric
to Sn(r) for some r.

• If P (M) < 4, then M is homeomorphic to Sn.

• If there is δ(n) > 0 such that P (M) < 1 + δ(n), then M is diffeomor-
phic to Sn

• If P (M) = 4, then M is either homeomorphic to Sn, or isometric to
CPn/2, HPn/4 or the Cayley plane.

Theorem. Let (M, g) be a Riemannian n-manifold, p ∈ M and w ∈ TpM
such that ‖w‖gp = 1. Then,

S(w⊥) := {v ∈ TpM : ‖w‖gp = 1, v ⊥ w} ∼= Sn−2

Further, there is c(n) such that

ρ(w,w) = c(m)

∫
S(w⊥)

R(span{w, v})dv

That is ρ(w,w) is the normalized average of the sectional curvatures of the
2-panes containing w. Here dv is the usual measure on Sn−2.

Proof. Choose an orthonormal basis {e1, . . . , en} for TpM so that e1 = w
and

v = x2e2 + · · ·+ xnen

22



such that (x2)2 + · · ·+ (xn)2 = 1. Then.

R(span{w, v}) = R(v, w,w, v) = xixjR(ei, w, w, ej)

Hence, ∫
S(w⊥)

R(span{w, v})dv =

∫
‖x‖=1

xixjR(ei, w, w, ej)dx

=
∑
ij

R(ei, w, w, ej)

∫
Sn−2

‖x‖2

n− 1
dx

= ρ(w,w)

∫
Sn−2

‖x‖2

n− 1
dx

Thus, we set c(n) = 1∫
Sn−2

‖x‖2
n−1

dx
and we are done. �

Theorem. Let (M, g) be a Riemannian n-manifold, p ∈ M and w ∈ TpM .
Then, there is c̃(n) such that

τ = c̃(n)

∫
Sn−1

ρ(w,w)dw

That is, the scalar curvature is a normalized average of the Ricci tensor.

Proof. Let {e1, . . . , en} be an orthonormal basis for TpM . Let w = xiei.
Then,

ρ(w,w) = xixjρ(ei, ej)

Thus, ∫
Sn−1

ρ(w,w)dw =
∑
i,j

ρ(ei, ej)

∫
Sn−1

xixjdx

=

(∫
Sn−1

‖x‖2dx
)∑

i,j

ρ(ei, ej)

=

(∫
Sn−1

‖x‖2dx
)
τ

Thus, we set c̃(n) = 1∫
Sn−1 ‖x‖2dx

and we are done. �

Vector Calculus:

Consider M = R3 as a smooth manifold with usual coordinates (x, y, z). Set

∇ := (∂x, ∂y, ∂z)
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If f : R3 → R is in C∞(R3)

grad(f) := ∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
If ~F ∈ Γ(R3) is a smooth vector field, ~F = (F1, F2, F3), Fi ∈ C∞(R3),

curl(~F ) := ∇× ~F =

(
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

)
If ~G ∈ Γ(R3) is a smooth vector field, ~G = (G1, G2, G3), Gi ∈ C∞(R3),

div(~G) := ∇ · ~G =
∂G1

∂x
+
∂G2

∂y
+
∂G3

∂z

Clearly ker(grad) = {constant functions} ∼= R. It’s also well known that
im(grad) = ker(curl), im(curl) = ker(div), and im(div) = C∞(R3). Hence,
the following sequence is exact

0→ R ↪→ C∞(R3)
grad−→ Γ(R3)

curl−→ Γ(R3)
div−→ C∞(R3)→ 0

Theorem. 1) The Fundamental Theorem of Calculus: If f ′ is a real-
valued continuous function on [a, b], then

f(b)− f(a) =

∫ b

a
f ′(x) dx

2) Green’s Theorem: Let R be a bounded region in R2 with piecewise
smooth boundary ∂R. Orient the boundary to keep the region on the
left. Let F = (P,Q) be a smooth vector field defined on all of R (i.e.
P,Q : R→ R are smooth). Then∮

∂R
P dx+Q dy =

∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dxdy

3) Stokes’ Theorem (Curl). Let S be a smooth bounded oriented surface in
R3. Orient the boundary ∂S to keep S on the left. Let ~F = (F1, F2, F3),
be a smooth vector field on S (i.e. Fi : S → R are smooth) and ~N the
unit normal giving the orientation of S,∮

∂S
F1 dx+ F2 dy + F3 dz =

∫∫
S

curl(~F ) · ~N dA
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4) Gauss’s Theorem (Diveregence). Let R be a bounded region in R3 with
smooth boundary and ~F = (F1, F2, F3), be a smooth vector field on R
(i.e. Fi : R → R are smooth). Orient the boundary using the unit
outward normal ~N . Then∫∫

∂R

~F · ~N dA =

∫∫∫
R

div(~F ) dV

Differential Forms:

Let M be a smooth n-manifold. Recall that the tangent bundle TM
is a smooth vector bundle over M whose fibers over p are TpM . For local
coordinates (U, xi) a local frame for TM over U is given by (∂x1 , . . . , ∂xn).

The cotangent bundle T ∗M is the dual bundle of TM . That is, T ∗M is
a is a smooth vector bundle over M whose fibers over p are the dual spaces

T ∗pM := (TpM)∗ = Hom(TpM,R)

Thus, for local coordinates (U, xi), a local frame for T ∗M over U is given
by (dx1, . . . , dxn) where {dx1(p), . . . , dxn(p)} ⊂ T ∗pM is the dual basis to
{∂x1(p), . . . , ∂xn(p)} ⊂ TpM . The smooth sections of T ∗M are called 1-
forms on M .

Definition. Let M be a smooth n-manifold. If f ∈ C∞(M), we locally
define df ∈ Γ(T ∗M) as

df := ∂xif dx
i

N

Remark. If X ∈ Γ(TM) is locally written as X = Xi∂xi , we have

[df(p)](X(p)) = [∂xif(p) dxi(p)](Xj(p)∂xj (p)) = Xk(p)∂xkf(p) = X(f)(p)

H

Definition. Let M,N be smooth manifolds and F : M → N a smooth
map. Recall that F ∗ : C∞(N)→ C∞(M) is given by F ∗h = h ◦ F and that
F∗ : TpM → TF (p)N (note that F∗ was also called dF (p) in the Fall) is given
by F∗(Xp)(h) = Xp(F

∗h) for any Xp ∈ TpM and any h ∈ C∞(N). We define
the pullback of 1-forms F ∗ : T ∗F (p)N → T ∗pM by

F ∗(ωF (p))(Xp) = ωF (p)(F∗(Xp))

for any ωF (p) ∈ T ∗F (p)N and Xp ∈ TpM N
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Lemma. Let M,N be smooth manifolds and F : M → N a smooth map. If
h ∈ C∞(N), then

d(F ∗h) = F ∗(dh)

Proof. Let (U, x1, . . . , xn) be local coordinates in M , p ∈ U and let
(V, y1, . . . , ym) local coordinates in N such that F (U) ⊂ V . We abuse
notation by setting dxi := dxi(p) and dyj := dyj(F (p)). Notice that each
dyj ∈ T ∗F (p)N and therefore

F ∗(dyj) =
n∑
i=1

ajidx
i ∈ T ∗pM

Thus,

[F ∗(dyj)](∂xk) =

[
n∑
i=1

ajidx
i

]
(∂xk) =

n∑
i=1

aji δi,k = ajk

On the other side, by definition of pullback [F ∗(dyj)](∂xk) = dyj(F∗∂xk).
But, for any h ∈ C∞(N) we have

[F∗∂xk ](h) = ∂xk(h ◦ F ) =
m∑
j=1

∂h

∂yj
∂yj

∂xk
=

m∑
j=1

∂yj

∂xk
∂yj (h),

that is

F∗∂xk =

m∑
i=1

∂yi

∂xk
∂yi

Hence,

[F ∗(dyj)](∂xk) = dyj(F∗∂xk) = dyj

(
m∑
i=1

∂yi

∂xk
∂yi

)
=

m∑
i=1

∂yi

∂xk
δj,i =

∂yj

∂xk

Thus, we’ve shown that ajk = ∂yj

∂xk
. Finally, if h ∈ C∞(N) we know that

dh = ∂yjhdy
j and therefore

F ∗(dh) =
m∑
j=1

∂yjhF
∗(dyj) =

m∑
j=1

∂yjh

(
n∑
i=1

∂yj

∂xk
dxi

)

=
∑
i,j

∂h

∂yj
∂yj

∂xk
dxi =

n∑
i=1

∂xi(F
∗h)dxi = d(F ∗h)
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Brief review of Exterior algebras:

Recall that if V is a real vector space, we set T p(V ) := V ⊗· · ·⊗V (p times)
for any p ≥ 0. In particular, T 0(V ) = R, T 1(V ) = V ,T 2(V ) = V ⊗ V , and
so on. Set

T (V ) :=

∞⊕
p=0

T p(V )

We call T (V ) the tensor algebra on V , and it is the universal unital algebra
generated by V . If J(V ) is the two-sided ideal of the tensor algebra generated
by the elements {v⊗w+w⊗ v : v, w ∈ V }, we define the exterior algebra
Λ(V ) to be the quotient

Λ(V ) := T (V )/J(V )

We write v1∧· · ·∧vn for the image in Λ(V ) of the pure tensor v1⊗· · ·⊗vn in
T (V ). In fact, Λ(V ) is the universal unital algebra generated by V subject to
the relations v∧w+w∧v = 0. Hence, Λ(V ) has the following anti-symmetric
property

v1 ∧ · · · ∧ vi ∧ vi+1 ∧ · · · ∧ vn = −v1 ∧ · · · ∧ vi+1 ∧ vi ∧ · · · ∧ vn

for any 1 ≤ i ≤ n − 1 and v1, . . . , vn ∈ V . We let Λp(V ) be the image of
Tn(V ) under the quotient map T (V )� Λ(V ).

Lemma. Let V be a real vector space with basis {e1, . . . , en}. Then,

• Λp(V ) = 0 for any p > n.

• Λn(V ) = span{e1 ∧ · · · ∧ en} and therefore dim(Λn(V )) = 1

• In general, for p ≤ n

Λp(V ) = span{ei1 ∧ · · · ∧ eip : 1 ≤ i1 < i2 < · · · < ip ≤ n}

and therefore dim(Λp(V )) =
(
n
p

)
.

Back to differential forms:

Let M be a smooth n-manifold. Recall that we defined 1-forms to be smooth
sections to the bundle T ∗M . Therefore, any 1-form ω can written as

ω = fidx
i,
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where each fi ∈ C∞(M).

Definition. In general, If M is a smooth n-manifold, we define a p-form
on M as a smooth section of the vector bundle

Λp(T ∗M)
π−→M

That is, a p-form is a smooth map ω : M → Λp(T ∗M), such that π◦ω = idM .
So, for any x ∈M we, have a map

ω(x) : TxM × · · · × TxM︸ ︷︷ ︸
p times

→ R.

Sometimes ω(x) is denoted by ωx or simply by ω when x is clear from
context. We denote by Ωp(M) := Γ(Λp(T ∗M)) the space of p-forms in M .
Notice that Ω0(M) = C∞(M) and that Ωq(M) = 0 for any q > n. N

Remark. Consider sets I = {i1, . . . , ip : 1 ≤ i1 < · · · < ip ≤ n} and let
dxI := dxi1 ∧ · · · ∧ dxip . Then, any p form ω can written as

ω =
∑
|I|=p

fIdx
I ,

where each fI ∈ C∞(M). H

Remark. If ω ∈ Ωp(M) and θ ∈ Ωq(M), then we get ω ∧ θ ∈ Ωp+q(M) so
that (ω ∧ θ)(x) = ω(x) ∧ θ(x) for any x ∈M . Thus,

ω ∧ θ = (−1)pqθ ∧ ω

H

Definition. Let M,N be smooth manifolds. If F : M → N a smooth
map. it induces a pullback of p-forms F ∗ : Ωp(N) → Ωp(M), so that if
ω ∈ Ωp(N), then F ∗ω ∈ Ωp(M) is given by

(F ∗ω)x(X1, . . . , Xp) := ωF (x)(F∗X1, . . . , F∗Xp)

for any x ∈M and X1, . . . , Xp ∈ TxM N

Definition. Let M be a smooth n-manifold. For p ≥ 0 we define a map
d : Ωp(M)→ Ωp+1(M) by

d

∑
|I|=p

fIdx
I

 :=
∑
|I|=p

dfI ∧ dxI =
∑
|I|=p

(
n∑
i=1

∂xifI dx
i

)
∧ dxI

N
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Lemma. Let M1,M2 be smooth manifolds and dMi : Ωp(Mi) → Ωp+1(Mi)
the map defined above. (when Mi is clear we denote d := dMi.)

• For any ω ∈ Ωp(Mi), d(dω) = 0 ∈ Ωp+2(Mi), i.e. d2 = 0.

• If F : M1 → M2 is a smooth map, then F ∗(dM2ω) = dM1(F ∗ω) for
any ω ∈ Ωp(M2).

• If U ⊂Mi, d(ω|U ) = (dω)|U .

• For any ω ∈ Ωp(Mi) and θ ∈ Ωq(Mi) we have

d(ω ∧ θ) = dω ∧ θ + (−1)pω ∧ dθ

Remark. Let M be a smooth n-manifold. Notice that since d2 = 0, we get
a complex, known as the de Rham complex, given by

C∞(M) = Ω0(M)
d−→ Ω1(M)

d−→ · · · d−→ Ωn(M)

H

Orientable Manifolds:

Lemma. Let M be a smooth n-manifold. The following are equivalent and
if either are satisfied M is said to be orientable

(1) There is an atlas {(Uα, ϕα)} so that the transition functions satisfy

detϕ′α,β > 0

(2) There exist a smooth n-form which never vanishes, such form is known
as the oriented volume form.

Example. M = Sn ⊂ Rn+1 is orientable and the oriented volume form is
given by

ωn :=

n+1∑
i=1

(−1)i+1xi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ xn+1

where the hat means that dxi is omitted.

If M = S1, we have ω1 = x dy − y dx. Thus, if θ 7→ (cos(θ), sin(θ))
parametrizes S1 we get

ω1 = cos(θ)d(sin(θ))− sin(θ)d(cos(θ)) = (cos2 θ + sin2 θ)dθ = dθ
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If M = S2, we have ω2 = x dy ∧ dz − y dx ∧ dz + z dx ∧ dy. Thus, if
(φ, θ) 7→ (sin(φ) cos(θ), sin(φ) sin(θ), cos(φ)) parametrizes S2 we get

ω2 = sinφ dφ ∧ dθ

H
Example.

• RPn := Sn/x ∼ −x is orientable if and only if n is odd.

• (Sn × Sn)/(x, y) ∼ (−y, x) is not orientable.

• (Sn × Sn)/(x, y) ∼ (−x,−y) is orientable.

H

Theorem. If M,N are orientable smooth manifolds, then M × N is ori-
entable. If either M or N is not orientable, then M ×N is not orientable.

Definition. Let M be a smooth n-manifold and X ∈ Γ(TM) a smooth
vector field. We define a map ιX : Ωp(M)→ Ωp−1(M) as follows

ιX(ω)x(X1, . . . , Xp−1) := ωx(X(x), X1, . . . , Xp−1)

for X1, . . . , Xp−1 ∈ TxM . N

Lemma. Let M be a smooth n-manifold, X,Y ∈ Γ(TM), f ∈ C∞(M),
ω ∈ Ωp(M) and η ∈ Ωq(M).

• ιX(df)x = X(f)(x).

• ιX(fω) = fιX(ω)

• ιX(ω ∧ η) = ιX(ω) ∧ η + (−1)pω ∧ ιX(η)

• ιfX(ω) = fιX(ω)

• ιX+Y (ω) = ιX(ω) + ιY (ω)

Example. M = R2

ι∂x(dx ∧ dy)− ι∂y(dy ∧ dx) = −dx+ dy
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M = R3

ιx∂x(dx ∧ dy ∧ dz) = x dy ∧ dz
ιx∂y(dx ∧ dy ∧ dz) = −x dx ∧ dz

H

Theorem. Let M be an oriented n-Riemannian manifold and M1 ⊂ M a
closed oriented n − 1 submanifold (for example M1 = ∂M). Let ωM be the
oriented volume form of M and ωM1 the one of M1. Let ~N be the unit
normal vector field compatible with the orientation of M and M1. Then,

ωM1 = ι~n(ωM )

Example. If M = Rn, M1 = Sn−1. We have ωRn = dx1 ∧ · · · ∧ dxn and
clearly ~N = x1∂x1 + · · ·+ xn∂xn . Then,

ωSn−1 = ι ~N (ωRn)

= ιx1∂x1+···+xn∂xn (dx1 ∧ · · · ∧ dxn)

=

n∑
i=1

ιxi∂xi (dx
1 ∧ · · · ∧ dxn)

=

n∑
i=1

(−1)i+1xi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

H

Integration of differential forms:

Definition. Let D,D′ ⊂ Rn and ϕ : D → D′ a diffeomorphism. Then, ϕ is
saif to be orientation preserving if

detϕ′ > 0

N

Remark. If ~y = (y1, . . . , yn) are coordinates in D and

ϕ(y1, . . . , yn) =
(
x1(~y), . . . , xn(~y)

)
Then,

detϕ′ = det

(
∂xi

∂yj

)
H

31



Theorem. (Change of Variables: Multivariable Calculus) Let D,D′ ⊂ Rn,
ϕ : D → D′ an orientation preserving diffeomorphism and f : D′ → R a
smooth map. Then,∫

D′
f dx1 · · · dxn =

∫
D
ϕ∗(f) detϕ′ dy1 · · · dyn

Theorem. Let D,D′ ⊂ Rn, ϕ : D → D′ an orientation preserving dif-
feomorphism and ω ∈ Ωn(D′) an n-form given by ω = f dx1 ∧ · · · ∧ dxn.
Then

ϕ∗ω = ϕ∗(f) detϕ′ dy1 ∧ · · · ∧ dyn ∈ Ωn(D)

Definition. Let D ⊂ Rn and ω ∈ Ωn(D) an n-form given by ω = f dx1 ∧
· · · ∧ dxn. We define ∫

D
ω :=

∫
D
f dx1 · · · dxn

N

Corollary. (Change of Variables: Differential Forms) Let D,D′ ⊂ Rn,
ϕ : D → D′ an orientation preserving diffeomorphism and ω ∈ Ωn(D′)
an n-form given by ω = f dx1 ∧ · · · ∧ dxn. Then. Then,∫

D′
ω =

∫
D
ϕ∗ω

Definition. Let M be an orientable smooth n-manifold and ω ∈ Ωn(M)
an n-form such that

supp ω := {x ∈M : ω(x) 6= 0}

is compact. Pick an atlas {(Uα, ϕα)} for which the transition functions
ϕα,β : Dβ → Dα are orientation preserving, where Dα := ϕ(Uα) ⊂ Rn.
Let ψα := ϕ−1

α : Dα → Uα. Then, ψ∗α : Ωn(Uα) → Ωn(Dα). There is
N ∈ N such that supp ω ⊂ Uα1 , . . . , UαN . Let {φk}Nk=1 be a partition of
unity subordinated to {Uαk}Nk=1. We define the integral of ω by∫

M
ω :=

N∑
k=1

∫
Dαk

ψ∗αk(φk · ω)

N

Remark. The definition above is independent from the choice of atlas and
from the partition of unity. H
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Theorem. (Stokes’ Theorem) Let M be a smooth oriented n-manifold
with boundary ∂M and ω ∈ Ωn−1(M) an (n−1)-form with compact support.
Then, ∂M has a natural orientation so that∫

∂M
ω =

∫
M
dω

Remark. The statement of Stokes’ Theorem requires a bit of interpretation.
On the left-hand side ω is to be interpreted as ι∗∂Mω where ι∂M : ∂M ↪→M
is the canonical inclusion. If ∂M = ∅ then the left-hand side is to be in-
terpreted as zero. When M is 1-dimensional, the left-hand integral is really
just a finite sum. H

Vector Calculus vs Differential forms:

Each one of the flowing squares commutes:

f ∈ C∞(R3) f ∈ Ω0(R3)

(F1, F2, F3) ∈ Γ(R3) F1dx+ F2dy + F3dz ∈ Ω1(R3)

(G1, G2, G3) ∈ Γ(R3) G1dy ∧ dz +G2dz ∧ dx+G3dx ∧ dy ∈ Ω2(R3)

g ∈ C∞(R3) gdx ∧ dy ∧ dz ∈ Ω3(R3)

grad d

curl d

div d

Indeed, recall that grad(f) = (∂xf, ∂yf, ∂xf), while

df = ∂xf dx+ ∂yf dy + ∂zf dz

Also curl(F1, F2, F2) = (∂yF3 − ∂zF2, ∂zF1 − ∂xF3, ∂xF2 − ∂yF1), whereas

d(F1dx+ F2dy + F3dz)

= (∂yF3 − ∂zF2)dy ∧ dz + (∂zF1 − ∂xF3)dz ∧ dx+ (∂xF2 − ∂yF1)dx ∧ dy

Finally, we had div(G1, G2, G3) = ∂xG1 + ∂yG2 + ∂zG3, while

d(G1dy ∧ dz+G2dz ∧ dx+G3dx∧ dy) = (∂xG1 + ∂yG2 + ∂zG3)dx∧ dy ∧ dz

De Rham Cohomology
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Definition. Let M be a smooth n-manifold. A form ω ∈ Ωp(M) is said to
be closed if dω = 0. A form ω ∈ Ωp(M) is called exact if ω = dη for some
η ∈ Ωp−1(N). Notice that, since d2 = 0, any exact form is closed.

One defines the The form ω ∈ Ωp(M) group Hp
dR(M) to be the set of closed

forms in Ωp(M) modulo the exact forms, i.e.

Hp
dR(M) :=

ker(d : Ωp(M)→ Ωp+1(M))

im(d : Ωp−1(M)→ Ωp(M))

N

Remark. Recall that for a smooth function F : N → M , the pullback
F ∗ : Ωp(M)→ Ωp(N) is so that

d(F ∗ω) = F ∗(dω),

Therefore, F ∗ descends to a linear map [F ∗] : Hp
dR(M)→ Hp

dR(N) given by

[F ∗][ω] := [F ∗ω]

which is well defined. H

Example. Notice thatH0
dR(M) = {locally constant functions on M}. Thus,

if M has k connected components, we have H0(M) ∼= R⊕ · · · ⊕R, k times.
In fact, if M =

⊔k
i=1Mk and

1Mi(x) :=

{
1 if x ∈Mi

0 if x 6∈Mi

Then {[1Mi ]} is a basis for H0
dR(M). Moreover, for any p,

Hp
dR(M) =

k⊕
i=1

Hp
dR(Mi)

H

Example. If M is a compact smooth oriented n-manifold without bound-
ary, Stokes theorem applied to the volume form ωM implies that

0 6= [ωM ] ∈ Hn(M)

H
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Example.

Hp
dR({pt}) ∼=

{
R if p = 0

0 if p > 0

H

Example.

Hp
dR(Sn) ∼=

{
R if p = 0, n

0 if 0 < p < n

In fact, H0
dR(Sn) = R[1Sn ] and Hn

dR(Sn) = R[ωSn ]. This is commonly writ-
ten as H∗dR(Sn) = span{[1Sn ], [ωSn ]} = R[1Sn ]⊕ R[ωSn ]. H

Lemma. Let M,N be smooth manifolds and F : M × [0, 1]→ N be smooth.
Define F0, F1 : M → N by F0(x) := F (x, 0) and F1(x) := F (x, 1). Then,

[F ∗0 ] = [F ∗1 ] : Hp
dR(N)→ Hp

dR(N)

That is, the pullback of two homotopic maps is equal.

Definition. Let M be a smooth manifold and N ⊂M a smooth submani-
fold. We say that N is a deformation retract of M , denoted by N ↘M ,
if there is a smooth map H : M × [0, 1]→M such that

• H(x, 0) = x for all x ∈M .

• H(y, t) = y for all y ∈ N and all t ∈ [0, 1].

• H(x, 1) ∈ N for all x ∈M .

N

Lemma. Let M be a smooth manifold and N ⊂ M such that N ↘ M .
Then, for any p

Hp
dR(M) ∼= Hp

dR(N)

Corollary. Hp
dR(Rn \ {0}) ∼= Hp

dR(Sn−1)

35



Theorem. (Mayer Vietoris) Let M be a smooth manifold with or without
boundary, and let U1, U2 be open subsets of M whose union is M .

U1

U1 ∩ U2 M

U2

1ı1

ı2 2

For each p, there is a linear map δ : Hp
dR(U1 ∩ U2) → Hp+1

dR (M) such that
the following sequence, called the Mayer–Vietoris sequence for the open cover
{U1, U2}, is exact:

· · ·Hp
dR(M)

∗1⊕∗2−→ Hp
dR(U1)⊕Hp

dR(U2)
ı∗1−ı∗2−→ Hp

dR(U1∩U2)
δ→ Hp+1

dR (M)→ · · ·

Example.

Hp
dR(CPn) ∼=

{
R if p even , 0 ≤ p ≤ 2n

0 else

H

Lemma. Let G be a finite group which acts without fixed points on a compact
smooth manifold M̃ without boundary. Let M := M̃/G and let π : M̃ →M
be the associated covering projection. Then

(1) π∗ : Hp
dR(M)→ Hp

dR(M̃) is injective.

(2) Hp
dR(M) ∼= im(π∗) = {[ω] ∈ Hp

dR(M̃) : [g∗][ω] = [ω] for all g ∈ G}.
Where For each g ∈ G, the map g : M̃ → M̃ is so that g(x) = g ·x for
x ∈ M̃ .

Lemma. Let M be a smooth manifold and let Sa (for a ≥ 1) be the unit
sphere in Ra+1. Let P be any point of Sa and let ιP (x) := (P, x) define an
inclusion of M in Sa ×M . There is a natural short exact sequence

0→ Hp−a
dR (M)

δ−→ Hp
dR(M × Sa)

ι∗P−→ Hp
dR(M)→ 0

Corollary. Let ωi be the volume form on Sai. Then,

H∗dR(Sa1 × · · · × Sak) = span{[ωi1 ∧ · · · ∧ ωip ] : 1 ≤ i1 < · · · < ip ≤ k}
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3 Spring 2018: Math 639

3.1 Theorems and Definitions.

Let (·, ·) be a positive definite inner product on a finite dimensional real
vector space. Let Λp(V ) be the exterior p-th algebra on V . Let {e1, . . . , en}
be an orthonormal basis for V . If I = {1 ≤ i1 < · · · < ip ≤ n}, let
eI := ei1 ∧ · · · ∧ eip . Recall that {eI} forms an orthonormal basis for Λp(V ).
We have that Λp(V ) inherits a natural inner product as follows

(eI , eJ) := det
(

(ei, ej)
)
i∈I,j∈J

Definition. Let (·, ·) be a positive definite inner product on a finite dimen-
sional real vector space. Let Λp(V ) be the p-th exterior algebra on V . If
ξ ∈ V , let ext(ξ) : Λp(V )→ Λp+1(V ) be the linear map

ext(ξ) : ω 7→ ξ ∧ ω.

Let int(ξ) := ext(ξ)? : Λp+1(V )→ Λp(V ), i.e.

(ξ ∧ ω, φ) = (ω, int(ξ)φ)

for all ω ∈ Λp(V ) and φ ∈ Λp+1(V ). N

Lemma. Let (·, ·) be a positive definite inner product on a finite dimensional
real vector space. If ξ, η ∈ V , then

ext(ξ) int(η) + int(η) ext(ξ) = (η, ξ) idΛp(V )

Definition. Let M be a Riemannian m-manifold. Let gjk := g(∂xi , ∂xj ),
and let g =

√
det(gij). We have

dvol = gdx1 . . . dxm.

The co-derivative δ : Ωp(M)→ Ωp−1(M) is defined by

(dω, σ)L2 :=

∫
g(dω, σ)gdx1 . . . dxm =

∫
g(ω, δσ)gdx1 . . . dxm =: (ω, δσ)L2

The Laplacian operator on pforms is then given by ∆ = δd+dδ. A p-form
ω is said to be harmonic if ∆ω = 0. N
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Remark. If ω ∈ Ωp(M) is harmonic, i.e. ∆ω = 0, then

(∆ω, ω)L2 = 0⇔ (δ(dω), ω)L2 + (d(δω), ω)L2 = 0

⇔ (dω, dω)L2 + (δω, δω)L2 = 0

⇔ ‖dω‖L2 + ‖δω‖L2 = 0

Thus, dω = 0 and δω. Hence ker(∆) = ker(d) ∩ ker(δ). In particular, if
ω ∈ ker(∆), then [ω] ∈ Hp

dR(M). H

Theorem. (Hodge’s Theorem) Let M be a compact Riemannian mani-
fold without boundary. Then the map ω 7→ [ω] from ker(∆) to Hp

dR(M) is
an isomorphism of vector spaces.

Corollary. (Kunneth Formula) Let M1, M2 be compact Riemannian
manifolds without boundary. Then,

Hp
dR(M1 ×M2) =

⊕
a+b=p

Ha
dR(M1) ∧Hb

dR(M2)

Definition. Let M be a smooth Riemannian m-manifold and ω ∈ Ωp(M)
given by

ω =
∑

1≤i1<···<ip≤m
fi1,...,ipdx

i1 ∧ · · · ∧ dxip

The Levi-Civita connection on p-forms is defined by the formula

∇∂xiω =
∑

1≤i1<···<ip≤m
(∂xifi1,...,ip)dx

i1 ∧ · · · ∧ dxip

−
∑

1≤i1<···<ip≤m

p∑
ν=1

m∑
k=1

Γik
iνfi1,...,ipdxi1 ∧ · · · ∧ dxiν−1 ∧ dxk ∧ dxiν+1 ∧ · · · ∧ dxip

In particular,
∇∂xidx

j = −Γik
jdxk

N

Lemma. Let M be a Riemannian m-manifold. Then

• d =

m∑
i=1

ext(dxi)∇∂xi
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• δ = −
m∑
i=1

int(dxi)∇∂xi

Definition. Let M be a compact oriented m-manifold without boundary.
Let (·, ·) be the pointwise inner product on p-forms. Let orn ∈ Ωm(M) be the
oriented volume form. The Hodge ? operator, ?p : Ωp(M) → Ωm−p(M),
is characterized by the property:

(ωp, ω̃p) orn = ωp ∧ ?pω̃p.
N

Remark. Let M be a compact oriented m-manifold without boundary. For
any ω, η ∈ Ωp(M) we have

(ω, η)L2 =

∫
M
ω ∧ ?η

H

Lemma. Let M be a compact oriented m-manifold without boundary. Then
?m−p?p = εp idp and that ?p∆p = εp∆m−p?p where ε2

p = 1 and ε2p = 1, i.e.
εp = ±1p and εp = ±1p are an appropriate choice of signs.

Corollary. Let M be a compact oriented m-manifold without boundary.
Then, (?p)

−1 = εp?m−p

Remark. Let M be a compact oriented m-manifold without boundary. If
d : Ωp(M) → Ωp+1(M) and δ : Ωp(M) → Ωp−1(M) are the differential and
codifferential maps respectively, then

?m−p−1d?p = ±δ

H

Theorem. (Poincaré Duality) Let M be a compact oriented m-manifold
without boundary, then

Hp
dR(M) ∼= Hm−p

dR (M)

where the isomorphism from Hp
dR(M) to Hm−p

dR (M) is induced by ?p.

Corollary. Let M be a connected, compact and oriented m-manifold without
boundary, then

Hm
dR(M) ∼= H0

dR(M) ∼= R
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Theorem. Let M be a compact oriented m-manifold without boundary. The
map I : Hp(M)⊗Hm−p(M)→ R given by

I(ωp ⊗ ω̃m−p) =

∫
M
ωp ∧ ω̃m−p

is well defined. Furthermore, it is a perfect pairing, that is given a non zero
[ωp] ∈ Hp(M) there is [ω̃m−p)] ∈ Hm−p(M) such that I(ωp ⊗ ω̃m−p) 6= 0

Corollary.
H∗(CPn) = span{[1], [x2], [x2

2], . . . , [x2n
2 ]}

Brief Review of Integral Curves and Flows:

Definition. Let M be a smooth manifold. A smooth curve σ : I → M is
said to be an integral curve of X if

σ̇(t) = Xσ(t) ∀ t ∈ I

If 0 ∈ I, the point σ(0) is called the starting point of σ. N

Lemma. Let X be a smooth vector field on a smooth manifold M . For each
point p ∈ M , there exist ε > 0 and a smooth curve σ : (−ε, ε) → M that is
an integral curve of X starting at p.

Lemma. Let X be a smooth vector field on a smooth manifold M , let I ⊂ R
be an interval, and let σ : I →M be an integral curve of V .

• For any a ∈ R, the curve σ̃ : Ĩ → M defined by σ̃(t) := σ(at) is an
integral curve of the vector field aX, where Ĩ = {t ∈ R : at ∈ I}.

• For any b ∈ R, the curve σ̂ : Î → M defined by σ̂(t) := σ(t+ b) is an
integral curve of the vector field X, where Î = {t ∈ R : t+ b ∈ I}.

Remark. Let M be a smooth manifold and X ∈ Γ(TM), and suppose
that for each point p ∈M , X has a unique integral curve starting at p and
defined for all t ∈ R, which we denote by Φ(p) : R → M . Then, for each
t ∈ R, we can define a map Φt : M → M by sending each p ∈ M to the
point obtained by following for time t the integral curve starting at p:

Φt(p) := Φ(p)(t)
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The second part on the previous lemma implies that for any s ∈ R, the map
t 7→ Φ(p)(t + s) is an integral curve of X starting at q := Φ(p)(s). Since we
are assuming uniqueness of integral curves, we just proved

Φ(q)(t) = Φ(p)(t+ s),

or equivalently Φt( Φs(p) ) = Φt+s(p), which gives

Φt ◦ Φs = Φt+s

H

Definition. Motivated by the previous remark, we define a global flow
on M to be a continuous map Φ : R ×M → M satisfying the following
properties

• Φ(0, p) = p for all p ∈M .

• Φ(t,Φ(s, p)) = Φ(t+ s, p) for all s, t ∈ R, p ∈M .

N

Remark. We’ve already seen how a vector field X ∈ Γ(TM) can give rise to
a (global) smooth flow by considering the integral curves of the vector field,
such flow will be denoted by ΦX . Conversely, if Φ : R×M →M is a smooth
global flow, for each p ∈ M we define Φ(p) : R → M by Φ(p)(t) := Φ(t, p)
and Xp ∈ TpM by

Xp := ˙Φ(p)(0)

then get a vector field X by considering the map p 7→ Xp. Furthermore,
each curve Φ(p) is an integral curve of X. H

Lemma. Let X,Y ∈ Γ(TM). For each t ∈ R we define ΦX
t : M → M by

ΦX
t (p) := ΦX(t, p). Then.

(ΦY
−t ◦ ΦX

−t ◦ ΦY
t ◦ ΦX

t )(p) = p+ t2[X,Y ]p +O(t3)

Lie Groups and Lie Algebras:

Lie Groups:

Definition. A Lie Group G is
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• A smooth manifold with element 1 ∈ G.

• A multiplication map m : G×G→ G such that m is smooth.

• An inversion map inv : G→ G such that inv is smooth.

• (G,m, inv) give G the structure of a group.

N

Example. The following are all matrix Lie groups

• GL(n,R) := {A ∈Mn(R) : det(A) 6= 0}

• O(n) :=
{
A ∈ GL(n,R) : AAT = In

}
• SL(n,R) := {A ∈ GL(n,R) : det(A) = 1}

• SO(n) := SL(n,R) ∩O(n)

• GL(n,C) := {A ∈Mn(C) : det(A) 6= 0}

• U(n) := {A ∈ GL(n,C) : AA∗ = In}

• SL(n,C) := {A ∈ GL(n,C) : det(A) = 1}

• SU(n) := SL(n,C) ∩U(n)

H

Lie Algebras:

Definition. A Lie algebra (over R) is a real vector space g endowed with
a map called the bracket from g×g to g, usually denoted by (X,Y ) 7→ [X,Y ]
that satisfies the following properties for all X,Y, Z ∈ g

• BILINEARITY: For a, b ∈ R,

[aX+bY, Z] = a[X,Z]+b[Y,Z] and [X, aY +bZ] = a[X,Y ]+b[X,Z]

• ANTISYMMETRY:
[X,Y ] = −[X,Y ]

• JACOBI IDENTITY:[
X, [Y,Z]

]
+
[
Y, [Z,X]

]
+
[
Z, [X,Y ]

]
= 0
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If g is a Lie algebra, a linear subspace h ⊂ g is called a Lie subalgebra of
g if it is closed under brackets. In this case h is itself a Lie algebra with the
restriction of the same bracket.

If g and h are Lie algebras, a linear map θ : g → h is called a Lie algebra
homomorphism if it preserves brackets:

[θX, θY ]h = θ[X,Y ]g

An invertible Lie algebra homomorphism is called a Lie algebra isomor-
phism. If there exists a Lie algebra isomorphism from g to h, we say that
they are isomorphic as Lie algebras. N

Lie Algebra of a Lie Group:

Definition. Let G be a Lie group. If g ∈ G we have left and right
multiplication by g denoted by Lg and Rg respectively. That is, Lg(h) = gh
and Rg(h) = hg. N

Remark. Both Lg and Rg are diffeomorphisms from G to it self and clearly
L−1
g = Lg−1 , R−1

g = Rg−1 . Furthermore, LgRh = RhLg for any g, h ∈ G. H

Remark. Recall that for a smooth manifold, a vector field is a smooth
section of the tangent bundle TM . In what follows, if X ∈ Γ(TM) is
a vector field, we’ll use the notation Xp := X(p) ∈ TpM . Furthermore, if
F : M → N is a diffeomorphism of smooth manifolds, we have a well defined
pushforward of vector fields F∗ : Γ(TM)→ Γ(TN) given by

(F∗X)q = F∗(XF−1(q)) for X ∈ Γ(TM), q ∈ N

Where F∗ in the RHS is the usual differential F∗ : TF−1(q)M → TqN . Finally,
a routine computation gives that for any X,Y ∈ Γ(TM)

F∗[X,Y ] = [F∗X,F∗Y ]

All the above makes sense because F is a diffeormorphism, otherwise the
pushforward of vector fields may not be well defined. H

Definition. Let G be a Lie group. The Lie algebra of G, denoted by
g(G) := g, is the space of left invariant vector fields. That is,

g := {X ∈ Γ(TG) : (Lg)∗Xh = Xgh for all g, h ∈ G}
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Since Lg : G→ G is a diffeormorphism, thanks to the remark above we have
in fact

g = {X ∈ Γ(TG) : (Lg)∗X = X for all g ∈ G}

N

Lemma. If X,Y ∈ g, then [X,Y ] ∈ g, that is g is indeed a Lie algebra.

Proof. For any g ∈ G we have

(Lg)∗[X,Y ] = [(Lg)∗X, (Lg)∗Y ] = [X,Y ]

�

Lemma. The map X 7→ X1, from g to T1G is a bijection. Thus, we usually
identify g with T1G.

Proof. Suppose first that X1 = Y1 for X,Y ∈ g. Then, for any g ∈ G

Xg = (Lg)∗X1 = (Lg)∗Y1 = Yg

Thus X = Y , proving injectivity. To show surjectivity, take any w ∈ T1G
and let’s define Xw by

Xw
g := (Lg)∗w.

Then, Xw ∈ Γ(TG). Moreover, for any h ∈ G we get

(Lh)∗X
w
g = (Lh)∗(Lg)∗w = (LhLg)∗w = (Lhg)∗w = Xw

hg

Hence, Xw ∈ g. By construction Xw
1 = w. �

Remark. When G = GL(n,R), its Lie algebra g which we’ve identified
with TInG, is now in turn identified with Mn(R). Thus, for any w ∈Mn(R)
and any g ∈ GL(n,R) we have

Xw
g = (Lg)∗w = gw

because Lg is a linear map and therefore (Lg)∗ = Lg. H

Remark. Let G = GL(n,R), whose Lie algebra is g ∼= TInG
∼= Mn(R).

If X := Xw ∈ Γ(TG) for any w ∈ Mn(R), then its flow ΦX is such that
Φ(In)(t) := ΦX

t (In) is the unique integral curve to X starting at In. Thus,
since by construction ∂t{Φ(In)}(0) = XIn = Inw = w, it follows that

ΦX
t (In) = expIn(tw)
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For g ∈ G, notice that the curve t 7→ gΦX
t (In) is the integral curve for X

starting at g. Thus, by uniqueness of such integral curves, we ought to have
ΦX
t (g) = gΦX

t (In), that is

ΦX
t (g) = g expIn(tw) = g

∞∑
k=0

tkwk

k!

That is, in this case the exponential map coincides with the usual exponen-
tial of matrices. H

Remark. Let G = GL(n,R), whose Lie algebra is g ∼= TInG
∼= Mn(R).

The vector spaces g and Mn(R) have independently defined Lie algebra
structures-the first coming from Lie brackets of vector fields, and the sec-
ond from commutator brackets of matrices. The next theorem shows that
the natural vector space isomorphism between these spaces is in fact a Lie
algebra isomorphism. H

Theorem. Let G = GL(n,R) and g its Lie algebra. For w ∈ TInG ∼= Mn(R)
let Xw ∈ g be as in the previous proof. Then,

[Xv, Xw] = X [v,w]

for any v, w ∈Mn(R).

Theorem. Let G be a Lie group. The map exp1 : T1G → G is a local
diffeomorphism such that (exp1)∗ = id and for any w ∈ T1G,

exp1(tw) exp1(tw) = exp1((t+ s)w)

Theorem. If H is a closed subgroup of a Lie group G, then H is a closed
submanifold of H and it’s a Lie group on its own right. Furthermore, the
Lie algebra of H, denoted by h, is given by

h = {w ∈ g : exp1(tw) ∈ H for all t ∈ R}

Example. Recall that O(n) :=
{
A ∈ GL(n,R) : AAT = In

}
. Then, the Lie

algebra of O(n), which we denote by o(n), is given by

o(n) = {w ∈Mn(R) : exp(tw) ∈ O(n) for all t ∈ R}
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Suppose that w ∈ o(n). Then, for any t ∈ R we have exp(tw) ∈ O(n) and
therefore

exp(tw) exp(tw)T = In ⇐⇒ exp(tw) exp(twT ) = In

⇐⇒
(
In + tw +O(t2)

) (
In + twT +O(t2)

)
= In

⇐⇒ In + tw + twT +O(t2) = In

⇐⇒ tw + twT = O(t2)

⇐⇒ w + wT = O(t)

Thus, if t = 0 we get w + wT = 0. Now suppose that w ∈ Mn(R) is such
that w + wT = 0. Then, for any t ∈ R

exp(tw) exp(tw)T = exp(tw) exp(twT ) = exp(tw) exp(−tw) = exp((t−t)w) = In

Thus, we’ve shown

o(n) =
{
w ∈Mn(R) : w + wT = 0

}
H

Example. Let 〈·, ·〉 be an inner product in Rn with signature (P,N), for
P +N = n. Let

O(P,N) := {A ∈ GL(n,R) : 〈Ax,Ay〉 = 〈x, y〉 for any x, y ∈ Rn}

The adjoint of a matrix w ∈Mn(R) for this inner product is defined as usual
by 〈wx, y〉 = 〈x,w∗y〉. Then, we find that the Lie algebra of O(P,N) is

o(P,N) = {w ∈Mn(R) : w + w∗ = 0}

H

Example. Recall that U(n) := {A ∈ GL(n,C) : AA∗ = In}, where A∗ is
the conjugate transpose of A. Then,

u(n) = {w ∈Mn(C) : w + w∗ = 0}

H

Lemma. Let w ∈Mn(F), where F is either R or C. Then,

det(exp(w)) = etr(w)
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Corollary. Recall that SL(n,F) := {A ∈ GL(n,F) : det(A) = 1}, where F is
either R or C. Then

sl(n,F) = {w ∈Mn(F) : tr(w) = 0}

Example. Recall that SO(n) := SL(n,R) ∩O(n) and SU(n) := SL(n,C) ∩
U(n). Then

so(n) = sl(n,R) ∩ o(n) = {w ∈Mn(R) : w + wT = 0, tr(w) = 0}

and

su(n) = sl(n,C) ∩ u(n) = {w ∈Mn(C) : w + w∗ = 0, tr(w) = 0}

H

Remark. How to compute the Lie algebra of H ×K in terms of their Lie
algebras h, k? Suppose that H and K are both Lie subgroups of GLn(R)
and GLm(R) respectively, so we may think of H ×K as a Lie subgroup of
GLn+m(R). Notice that we are embedding Mn(R)×Mm(R) into Mm+n(R)
via the map

ι(A,B) :=

(
A 0n×m

0m×n B

)
Now, notice that the underling space for the Lie algebra of H ×K is

TIn+m(H ×K) ∼= TIn(H)×TIm(K) = h× k ⊂Mn(R)×Mn(R) ↪→Mm+n(R)

Furthermore, the Lie bracket is

[ι(A1, B1), ι(A2, B2)] = ι([A1, A2], [B1, B2])

for A1, A2 ∈ h and B1, B2 ∈ k. That is, the Lie bracket for TIn+m(H ×K) is
completely determined by the one for h and the one for k. Finally, suppose
that

h := spanR{e1, . . . , eh}, k := spanR{f1, . . . , fk}.

Then,

TIn+m(H ×K) = ι(h× k) = spanR{ι(e1, 0), . . . , ι(eh, 0), ι(0, f1), . . . , ι(0, fk)}

H
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Remark. Let G,H be Lie groups whose Lie algebras are g and h. If
F : G → H is a smooth map that is also a group homomorphism, for any
X ∈ g we get an element F ∗X in h by considering the vector field obtained by
the derivation F∗X1 ∈ T1H. Even though F may not be a diffeomorphism,
the map F∗ : g→ h is a well defined Lie algebra homomorphism.

We have then a functor from the category of Lie groups to the category
of Lie algebras sending a group G to its Lie algebra g(G) and a morphism
F : G → H to F∗ : g(G) → g(H). This is not a 1 to 1 functor, since non
isomorphic groups can have same Lie algebras. However, isomorphic groups
must have isomorphic Lie algebras. H

Theorem. If g is a Lie algebra, then there is a simply connected group G
such that g(G) = g

Theorem. If θ : g → h is a Lie algebra homomorphism, and H,G are
simply connected groups such that g(G) = g and g(H) = h, then there is a
Lie group homomorphism Θ : G→ H such that Θ∗ = θ.

Lie Algebra Cohomology:

Definition. Let g be a finite dimensional Lie algebra with basis given by
{e1, . . . , en}. The Lie algebra structure constants Cij

k ∈ R are given by

[ei, ej ] = Cij
kek

Antisymmetry of the bracket implies that Cij
k = −Cjik. N

Definition. Let g be a finite dimensional Lie algebra with basis given by
{e1, . . . , en}. Let {e1, . . . , en} ⊂ g∗ the dual basis, that is each ei : g→ R is
such that

ei(ej) = δij

We define a map d : g∗ → Λ2g∗ by

dek := −
∑
i<j

Cij
kei ∧ ej

Extending this with the Leibnitz rule gives a map d : Λpg∗ → Λp+1g∗. Jacobi
identity for the bracket implies that d2 = 0 and therefore it makes sense to
define

Hp(g) :=
ker(d : Λpg∗ → Λp+1g∗)

im(d : Λp−1g∗ → Λpg∗)

N
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Theorem. (Hodge) Let G be a compact connected Lie group and g its Lie
algebra. Then Hp(g) ∼= HdR(G).

Example. One can use Hodge Theorem to determine when a Lie algebra
comes from a compact connected Lie group. For example, if the Lie algebra
cohomology doesn’t satisfy Poincaré duality, then it can’t be the cohomol-
ogy of a compact manifold. H

Remark. Notice that any Lie group G is orientable. Indeed, suppose G
has dimension n as smooth manifold. Let {w1, . . . , wn} be a basis for T1G.
As usual we define vector fields Xwi ∈ Γ(TG) by letting Xwi

g := (Lg)∗wi for
each g ∈ G. For each g ∈ G, {Xw1

g , . . . , Xwn
g } is then a basis for TgG. This

gives a map TG → G × Rn sending (g, aiX
wi
g ) to (g, (a1, . . . , an)) which is

clearly smooth and has a smooth inverse. Thus TG is trivial and hence G
ought to be orientable (product of orientable is orientable and the tangent
bundle is always orientable). H

Theorem. Let G be a compact connected Lie group.

• G is unimodular: There is a bi-invariant volume form on G, that is
there is ω ∈ Ωn(G) such that (Lg)∗ω = (Rg)∗ω = ω for all g ∈ G.

• There is a bi-invariant Riemannian metric on G, that is there is
(·, ·), a smooth positive definite inner product on Γ(TG), such that
((Lg)∗X, (Lg)∗Y ) = ((Rg)∗X, (Rg)∗Y ) = (X,Y ) for all X,Y ∈ Γ(TG),
and all g ∈ G,

• Any harmonic p-form in bi-invariant.

Theorem. .

• If g is a finite dimensional Lie algebra, then g is isomorphic to a matrix
algebra.

• If g is a finite dimensional Lie algebra, then g is the Lie algebra of a
matrix group.

• Let G and H be compact connected Lie groups, whose Lie algebras are
given by g and h. Then G ∼= H if and only of g ∼= h.
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Definition. Let g be a finite dimensional Lie algebra. For each X ∈ g, we
define ad(X) ∈ Hom(g, g) by

ad(X)Y = [X,Y ]

Jacobi identity implies that

ad[X,Y ] = [ad(X), ad(Y )].

Thus, ad : g→ Hom(g, g) is a Lie algebra homomorphism N

Definition. Let g be a Lie algebra. The Killing form K : g × g → R, is
given by

K(X,Y ) := tr(ad(X)ad(Y ))

Notice that K(X,Y ) = K(Y,X). If {e1, . . . , en} is a basis for g, we put
Kij := K(ei, ej). N

Example. Let G be a Lie group and g its Lie algebra. If K is non-
degenerated, then G is unimodular. H

Remark. Let G ≤ GL(n,R) be Lie group and g its Lie algebra. For any
X ∈ g and any g ∈ G we know that (Lg)∗X = X, furthermore we know that
(Lg)∗w = gw for w ∈Mn(R). So (Lg)∗ is actually left matrix multiplication
when we regard g ⊂ Mn(R). A natural question is to find how (Rg)∗ acts
on g as a subset of Mn(R). Well, take any X ∈ g, g ∈ G, since Rg is a
diiffeomorphism(
(Rg)∗X

)
In

= (Rg)∗XRg−1 (In) = (Rg)∗Xg−1 = Xg−1g = Lg−1XIng = g−1XIng

Thus if w corresponds to X under the identification g ↔ TInG, it follows
that g−1wg corresponds to (Rg)∗X under the same identification. Under
out previous notation we’ve shown

Xg−1wg = (Rg)∗X
w

Therefore we say that (Rg)∗w = g−1wg for any w ∈ TInG. This gives us a
map Ad : G → GL(g) given by Ad(g) = (Rg)∗ for any g ∈ G. It turns out
that Ad∗ : g→ Hom(g, g) is actually given by ad. H

Theorem. Let G be a closed connected subgroup of GL(m,R) for some m.
Let (·, ·) be a left-invariant symmetric bilinear form on TG. This is defined
on matrices A,B ∈ TInG

∼= g by letting (A,B) := (XA, XB), where as
usual the vector field XA is defined by XA

g := (Lg) ∗ A for any g ∈ G. The
following conditions are equivalent
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• (·, ·) is bi-invariant

• (A,B) = (g−1Ag, g−1Bg) for any A,B ∈ g and g ∈ G.

• ad(A) is skew-adjoint, that is for any B,C ∈ g

(ad(A)B,C) = −(B, ad(A)C)

• For the following condition to be equivalent we need to add that (·, ·)
gives Riemannian metric and ∇ is the Levi-Civita connection.

• then for any A,B ∈ g

∇XAXB =
1

2
X [A,B]

Theorem. Let G be a closed connected subgroup of GL(m,R) for some
m. Let (·, ·) be a bi-invariant Riemannian metric and ∇ the Levi-Civita
connection. Then

• R(XA, XB)XC = −1

4

[
[A,B], C

]
for any A,B,C ∈ g

• The curves g expg(At)h are geodesics in G for any g, h ∈ G and A ∈ g.
That is, the expg in Lie group sense is the exponential map in the Levi-
Civita sense.

Lemma. Let G be a closed connected subgroup of GL(m,R) for some m. Let
(·, ·) be a bi-invariant Riemannian metric and ∇ the Levi-Civita connection..
Then

• G is geodesically complete

• ρ = −1
4K, where ρ is the Ricci tensor and K the Killing form.

• K is negative semi-definite.

• If K is negative definite and G is connected, then G is compact.

• If G is compact, then G is isomorphic to SO(n) for some n.

Proof. We only prove the assertion If K is negative definite and G is
connected, then G is compact, since it could be a potential qual problem.
Since K is negative definite, we use it to get a negative definite metric on
G. Thus, ρ = −1

4K is positive definite (therefore ρ ≥ ε(·, ·)) and therefore
we can appeal to Myers’s theorem from Spring, which assures us that G is
compact. �
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Theorem. If G = SO(n), the Killing form is negative definite.

Example. As a corollary of the previous Lemma and Theorem, it follows
that if G is compact, then its Killing form is negative semi-definite. Thus,
any Lie algebra whose Killing form is not negative semi-definite can’t come
from a compact group. H

Theorem. (Hodge) Let G be a connected compact Lie group. Then H∗dR(G)
(which is isomorphic to H∗(g) by a previous thm) is an exterior algebra on
odd generators. That is

H∗dR(G) = Λ[x1, . . . , xl]

where each xi has odd degree.

Example. The previous theorem implies that any Lie algebra whose co-
homology is not an exterior algebra on odd generators can’t come from a
compact group. For example, if one gets

H∗(g) = R[1]⊕ R[e1]⊕ R[e1 ∧ e3]

We have H∗(g) = Λ[e1, e1 ∧ e3] and therefore g can’t be the Lie algebra of a
compact group. H

Example.

• H∗dR(Tn) = Λ[dθ1, . . . , dθn] where each dθi ∈ Ω1(S1).

• H∗dR(S3) = Λ[ωS3 ]

• H∗dR(U(2)) = H∗dR(S1 × S3) = Λ[ωS1 , ωS3 ]

H

Example. Why is S1 × S2 not a Lie group. Well it is a compact manifold,
however we know that

H∗dR(S1 × S2) = span{[1], [ωS1 ], [ωS2 ], [ωS1 ∧ ωS2 ]}

and ωS2 has degree 2. H
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Example. In general,

H∗(U(n)) = Λ[x1, x3, . . . , x2n−1]

where x2k−1 := [Θ2k−1] where Θ2k−1 are the Maurer-Cartan forms, which
we defined as follows: Let g : U(n) ↪→ Mn(C) be the natural inclusion.
Then, dg and g−1dg are both matrices of 1-forms. We define

Θ2k−1 := tr
(
(g−1dg)2k−1

)
H

Holomorphic Manifolds:

Definition. A holomorphic manifold is a manifold with an atlas of
charts to Cn, such that the transition maps are holomorphic. That is, M
together with an atlas (Uα, ϕα) where each ϕα : Uα → ϕα(Uα) ⊂ Cn is a
homeomorphism and the transition maps

ϕα,β := ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ)→ ϕα(Uα ∩ Uβ)

are holomorphic. Notice that holomorphic manifolds are orientable:

det Rϕ
′
α,β = |det Cϕ

′
α,β|2 > 0

N

Set i :=
√
−1. Coordinates is Cn are

z1 = x1 + iy1, . . . , zn = xn + iyn.

Define 1-forms

dz1 = dx1 + idy1, . . . , dzn = dxn + idyn.

together with their dual elements

∂z1 =
1

2
(∂x1 − i∂y1), . . . , ∂zn =

1

2
(∂xn − i∂yn)

Similarly, if
dz1 = dx1 − idy1, . . . , dzn = dxn − idyn.
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their dual elements are

∂
z1

=
1

2
(∂x1 + i∂y1), . . . , ∂zn =

1

2
(∂xn + i∂yn)

Definition. A function f : Cn → Ck is holomorphic iff ∂
zj
f = 0 for all

1 ≤ j ≤ n. N

Definition. For f : Cn → Ck, define operators ∂, ∂ and d by

∂f =
n∑
j=1

∂zjf dz
j , ∂f =

n∑
j=1

∂
zj
f dzj , df = ∂f + ∂f

Notice that f is holomorphic iff ∂f = 0. N

If I = {1 ≤ i1 < . . . < ip ≤ n} and K = {1 ≤ k1 < . . . < kq ≤ n}, we put

dzI = dzii ∧ · · · ∧ dzip , dzK = dzki ∧ · · · ∧ dzkq

Let Λp,q := span{dzI ∧ dzK : |I| = p, |K| = q}. Then, we extend the
opereators define above as

∂
(∑

fI,Kdz
I ∧ dzK

)
=
∑

∂fI,Kdz
I ∧ dzK

∂
(∑

fI,Kdz
I ∧ dzK

)
=
∑

∂fI,Kdz
I ∧ dzK

and we get ∂ : Λp,q →: Λp+1,q while ∂ : Λp,q →: Λp,q+1. Further, notice that

∂2 = 0, ∂
2

= 0 and ∂∂ + ∂∂ = 0.

Definition. Define J to be an endomorphism of the tangent bundle so that
for any 1 ≤ j ≤ n.

J(∂xj ) = ∂yj and J(∂yj ) = −∂xj

Notice that J2 = −id and that J(∂zj ) = i∂zj while J(∂
zj

) = −i∂
zj

. The
map J gives the complex structure. N

Definition. Let g be a Riemannian metric on M and J a complex structure
on M . The metric g is said to be Hermitian if for any X,Y ∈ Γ(TM),

g(JX, JY ) = g(X.Y )

That is, if J∗g = g. N

Lemma. If g0 is an arbitrary metric, then g := g0 + J∗g0 is Hermitian.
Thus, given a complex structure, Hermitian metrics always exist.
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Remark. Suppose g is Hermitian. Extending g to be complex bilinear we
easily find that

gα,β := g(∂zα , ∂zβ ) = 0

gα,β := g(∂zα , ∂zβ ) = 0

Moreover,
gα,β := g(∂zα , ∂zβ ) = g(∂zα , ∂zβ ) = gα,β

H

Definition. Suppose g is Hermitian. We define Ω by Ω(X,Y ) := g(JX, Y ).
It’s easily checked that Ω(X,Y ) = −Ω(Y,X). So Ω is a 2-form. In fact, we
have

Ω = i
(
gα,βdz

αdzβ
)

N

Definition. We say that M is Käler if dΩ = 0. In this case, in local
coordinates we have

Ω =

n∑
k=1

dxk ∧ dyk

N

Lemma. If N is a holomorphic submanifold of a Käler manifold, then N
is Käler.

Theorem. Let M be a compact Käler manifold and x := [ω] ∈ H2
dR(M).

Then, xn 6= 0 and the groups H2
dR(M), H4

dR(M), . . . ,H2n
dR(M) are all non

zero.

Example. For n ≥ 2, S1×S2n−1 is a complex compact manifold. However,
we know that

H2
dR(S1 × S2n−1) = 0,

and therefore S1 × S2n−1 is not Käler. H

Theorem. If M is a Käler manifold, then Ω is harmonic.

Example. CPn is Käler. H
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