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Abstract

The main goal of this document is for me to have some kind of guide for my language exam. The whole document
is an overview of section 2 of [1], which is a paper written in French and is one of the earliest works introducing
crossed products of C∗-algebras by discrete groups. Some notation here is slightly different from the one used in
[1]. In particular, in this document all the group actions have a name. In the current literature, most notations for
crossed products of a C∗-algebra A include the group G and a given name for the action of G on A. Incidentally,
such action is usually denoted by α. Here, however, our common notation is C∗(G,A, α, γ) where α is instead a
2-cocycle and γ is the action of G on A. If the cocycle is trivial, we get the usual crossed product C∗(G,A, γ).
Warning: Little proofreading has been done.
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1 Notation and Preliminaries

Throughout the document, A is a C∗-algebra and G is a discrete group, that is a group equipped with the discrete
topology, where e ∈ G denotes the identity element for G. We also suppose that we are given an action of G on A;
that is a homomorphism γ : G→ Aut(A). The action of s ∈ G on an element s ∈ A will be denoted by γs(a).

For a Banach space B, we put

• `1(G,B) to the space of functions f : G→ B such that ‖f‖1 :=
∑
s∈G ‖fs‖ <∞, where fs := f(s).

• `∞(G,B) to the space bounded functions f : G→ B, with norm ‖f‖∞ = sups∈G ‖fs‖.

• k(G,B) ⊂ `∞(G,B) to the space of functions G→ B with finite support.

If H is a Hilbert space, `2(G,H) is the space bounded functions f : G → H, so that
∑
s∈G ‖fs‖2 < ∞. Further, we

write `1(G), `∞(G), k(G) and `2(G) instead of `1(G,C), `∞(G,C), k(G,C) and `2(G,C) respectively.

For s ∈ G, we denote by χs : G → {0, 1}, to the characteristic function of {s}. When B is a complex vector space,
we identify k(G,B) with the algebraic tensor product k(G)⊗ B, so that for s ∈ G and b ∈ B, the elementary tensor
χs ⊗ b is the function G→ B that vanishes everywhere, except at s, whose value is b. In other words,

(χs ⊗ b)(t) := χs(t)b

for any t ∈ G. Similarly, if H is a Hilbert space, we identify `2(G,H) with the Hilbert space tensor product `2(G)⊗H.

A G-module is an abelian group M , together with a group action of G on M , with every element of G acting as an
automorphism of M . The action of s on m will be written as βs(m). We will write both G and M multiplicatively
(the usual convention is to write M additively, but at some point we will need M to be the center of a multiplicative
group). Since βs is an automorphism of M , the action of G is compatible with the group structure on M , that is

βs(m1m2) = βs(m1)βs(m2)

for any s ∈ G, m1,m2 ∈ M . For n ≥ 0, the set Cn(G,M) of functions from Gn → M (here G0 is {e}) is an abelian
group when equipped with pointwise multiplication: (f1f2)(s1, . . . , sn) := f1(s1, . . . , sn)f2(s1, . . . , sn). The elements
of this group are called the (inhomogeneous) n-cochains. We get coboundary homomorphism dn+1 : Cn(G,M) →
Cn+1(G,M) defined by

(dn+1f)(s1, . . . , sn+1) = βs1
(
f(s2, . . . , sn+1)

)( n∏
i=1

[
f(s1, . . . , si−1, sisi+1, . . . , sn+1)(−1)i

])
f(s1, . . . , sn)(−1)n+1

One may check that dn+1dn = 0, so this defines the following cochain complex

C0(G,M)
d1−→ C1(G,M)

d2−→ C2(G,M)
d3−→ · · ·

whose cohomology can be computed. Indeed, for each n ≥ 1 we define the group of n-cocycles by Zn(G,M) =
ker(dn+1) and the group of n-coboundaries by Bn(G,M) = im(dn), so that Bn(G,M) is in fact a subgroup of
Zn(G,M). The n-th cohomology group of the G-module M is then defined by

Hn(G,M) :=
Zn(G,M)

Bn(G,M)
n ≥ 1

and H0(G,M) = ker(d1).

2 Crossed Products of a C∗-algebra by a discrete group of automor-
phisms.

L1 algebras of some group extensions of a discrete group by a locally compact group

2.1

Let K be a locally compact group with identity denoted by 1K and center by Z. An extension of a discrete group G
by K is a triple (E, ι, p) where E is a locally compact group, ι : K → E is an injective homomorphism such that i(K)
is an open subgroup of E, and p : E → G a surjective homomorphism whose kernel is ι(K). This can be visualized by
the following short exact sequence

1 −→ K
ι−→ E

p−→ G −→ 1
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We say that two extensions (E, ι, p) and (E′, ι′, p′) of G by K are isomorphic if there is a homeomorphism ϕ : E → E′

such that ϕ ◦ ι = ι′ and p = p′ ◦ ϕ. That is, the following is a commutative diagram

1 K E G 1

1 K E′ G 1

ι p

ϕ

ι′ p′

A section of an extension (E, ι, p) of G by K is a map u : G → E such that p ◦ u = idG. For each s ∈ G, we put
us := u(s). The map u needs not to be a group isomorphism.

Now assume that we are given an action of G on K. To simplify computations we will write 1 such action using
β : G→ Aut(K) and use βs := β(s). This action gives both K and Z the structure of G-modules.

Given an extension (E, ι, p), we can get a 2-cocycle α, as long as we assume that we have a section u : G → E such
that

usι(k)u−1
s = ι(βs(k))

for any (s, k) ∈ G×K. We define a map α : G2 → E by putting

α(s, t) := usut(ust)
−1

If we identify K with ι(K), then α(s, t) belongs to Z, the center of K. Indeed, that α(s, k) belongs to K follows
because ι(K) = ker(p) and

p(α(s, k)) = p(us)p(ut)p(ust)
−1 = st(st)−1 = 1E

That α(s, k) belongs to Z is because

ι(k)α(s, t) = ι(k)usut(ust)
−1 = usι(βs−1(k))ut(ust)

−1 = usutι(βs−1t−1(k))(ust)
−1 = usut(ust)

−1ι(k) = α(s, t)ι(k)

(to do the previous computation I assumed that u−1
s = us−1 but that need not to be true, one should be able to prove

this without that assumption). We also can check that α ∈ Z2(G,Z); that is for any s, t, r ∈ G we must have

βs(α(t, r))α(s, tr) = α(st, r)α(s, t)

(still have no idea how to check that the above holds). Further, if ue is the identity of E, then α is a normalized
2-cocycle, that is α(s, t) is the identity element of E provided that at least one of s or t is e.

Conversely, suppose that we have a normalized 2-cycle α : G2 → Z in Z2(G,Z). Then, we can define an extension of
G by K, denoted by (E(G,K,α), ια, pα), as follows. As a space let E(G,K,α) be K ×G with an operation given by

(k, s)(l, t) :=
(
kβs(l)α(s, t), st

)
This makes K ×G into a locally compact group, with identity given by (1K , e) and inverse

(k, s)−1 =
(
βs−1(k−1)α(s−1, s)−1, s−1

)
The only hard part to check is that the operation defined is associative. To do so, notice fist that for any s1, s2, s3 ∈ G

βs1(α(s2, s3))α(s1, s2s3) = α(s1s2, s3)α(s1, s2)

because α is in Z2(G,Z). Then

(k1, s1)[(k2, s2)(k3, s3)] = (k1, s1)(k2βs2(k3)α(s2, s3), s2s3)

=
(
k1βs1

(
k2βs2(k3)α(s2, s3)

)
α(s1, s2s3), s1s2s3

)
=
(
k1βs1(k2)βs1s2(k3)βs1(α(s2, s3))α(s1, s2s3), s1s2s3

)
=
(
k1βs1(k2)βs1s2(k3)α(s1s2, s3)α(s1, s2), s1s2s3

)
=
(
k1βs1(k2)α(s1, s2)βs1s2(k3)α(s1s2, s3), s1s2s3

)
= (k1βs1(k2)α(s1, s2), s1s2)(k3, s3)

= [(k1, s1)(k2, s2)](k3, s3)

1 On Zeller-Meier’s paper the action is simply denoted by (s, k) 7→ s · k ∈ K for any (s, k) ∈ G×K.

3



The map ια : K → K × G is the cannonical inclusion k 7→ (k, e) and pα : K × G → G is the projection onto G. It’s
clear that ια(K) = ker(pα). Consider the section u : G→ K ×G given by u(s) := (1K , s). Then, p ◦ u = idG and

usια(k)u−1
s = [(1K , s)(k, e)](1K , s)

−1 = (βs(k), s)(α(s−1, s)−1, s−1) = (βs(k), e) = ι(βs(k))

where we have used that α is a normalized 2-cocycle and that βs(α(s−1, s)−1) = α(s, s−1)−1 which is also a consequence
of α ∈ Z2(G,Z). Similarly,

usut(ust)
−1 = [(1K , s)(1K , t)](1K , st)

−1 = (α(s, t), st)(α((st)−1, st)−1, (st)−1) = (α(s, t), e) = ι(α(s, t))

This is saying that any extension of G by K for which the section u with usι(k)u−1
s = ι(βs(k)) and ue = 1E exists,

actually looks like E(K,G,α) for a normalized 2-cocycle α.

2.2

Denote by µK a left Haar measure for K. Sometimes2 we write simply dk := dµK(k). We have ∆ : K → (0,∞) the
modular function for K, that is

d(kk0) = ∆(k0)dk

Since G acts on K by automorphisms, for a fixed s ∈ G, it’s clear that the measure

µs(U) := µK(βs−1(U))

is a left invariant measure on K. Thus, we also have a “modular function” δ : G→ (0,∞) for the automorphism βs−1 ,
that is

d(βs−1(k)) = δ(s)dk

We will write δs := δ(s). We have an action3 of G on L1(K) given by

γs(f)(k) = f(βs−1(k))δs

Below, we check that γs(f) ∈ L1(K) provided that f ∈ L1(K):∫
K

|f(βs−1(k))δs|dk =

∫
K

|f(l)|δsd(βs(l)) =

∫
K

|f(l)|δsδs−1dl = ‖f‖1 <∞

Thus, the action of G on L1(K) is isometric. Moreover, we can identify L1(K) and K with their images on the measure
algebra M(K) of complex regular measures on K equipped with convolution of measures. Indeed, for each f ∈ L1(K)
we have a measure µf given by µf (U) :=

∫
E
f(U)dk, and for every k ∈ K we have the point mass measure at k, that

we denote νk. That is,
L1(K) ∼= {µf : f ∈ L1(K)} = {µ ∈M(K) : µ� µK}

and
K ∼= {νk : k ∈ K}

We can multiply elements of K with elements of L1(K) by using the convolution of measures in M(K). In particular,
for any k ∈ K, f ∈ L1(K) and any measurable set U we have

(νk ∗ µf )(U) =

∫
K

∫
K

χU (xy)dνk(x)dµf (y) =

∫
K

χU (ky)dµf (y) =

∫
K

f(l)χk−1U (l)dl =

∫
K

f(k−1l)χU (l)dl

This gives at once that (νk ∗µf )� µK , and therefore, νk ∗µf can be identified with a function in L1(K), that we call
kf . Moreover, we clearly have

(kf)(l) = f(k−1l)

Suppose know that k ∈ Z, the center of K, and that fk := µf ∗ νk. We then have

(kf)(l) = f(k−1l) = f(lk−1) = (fk)(l)

That is kf = fk ∈ L1(K) for any f ∈ L1(K) and any k ∈ Z. This will be really useful to “shorten” some formulas
below for k = α(s, t) where α ∈ Z2(G,Z) is a normalized cocycle.

2dk is the notation used in Zeller-Meier, but here we actually need to use µK to compare it with other measures.
3This action is simply denoted by s · f on Zeller-Meier’s paper.
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2.3

Let ds be normalized counting measure for G (that is, each s ∈ G has measure 1). If we are given a normalized
2-cocycle α ∈ Z2(G,Z) we can equip the extension E := E(G,K,α) with a left Haar measure

d(k, s) := δsdk ⊗ ds

Then, if ξ : E → C is in L1(E), we have

‖ξ‖1 =

∫
E

|ξ(k, s)|d(k, s) =

∫
K×G

|ξ(k, s)|δsdk ⊗ ds =
∑
s∈G

δs

∫
K

|ξ(k, s)|dk

Furtheremore,

d
(

(k, s)(k0, s0)
)

=
(
kβs(k0)α(s, s0), ss0

)
= δss0d(kβs(k0)α(s, s0))⊗ d(ss0) = δs0∆(βs(k0))(δsdk ⊗ ds)

We claim that ∆(βs(k0)) = ∆(k0). Indeed, recall that if µs(U) := µK(βs−1(U)), then µs(U) = δsµK(U). Then, for
k0 ∈ K we have

δs−1∆(k0)µK(U) = δs−1µK(Uk0)

= µs−1(Uk0) = µK(βs(Uk0))

= µK(βs(U)βs(k0))

= ∆(βs(k0))µK(βs(U)) = ∆(βs(k0))δs−1µK(U)

Our claim now follows from comparing both ends on the previous equation. Thus, the modular function for E is
∆E(k0, s0) := δs0∆(k0). We now make L1(E) into an ∗-Banach algebra by letting

(ξ ∗ η)(k, s) :=

∫
E

ξ(l, t)η((l, t)−1(k, s))d(l, t) =
∑
t∈G

δt

∫
K

ξ(l, t)η(βt−1(l−1k)α(t−1, t)−1α(t−1, s), t−1s)dl

and
ξ∗(k, s) := ξ((k, s)−1)∆E((k, s)−1) = ξ(βs−1(k−1)α(s−1, s)−1, s−1)∆(k−1)δs−1

Turns out that, as Banach spaces, L1(E) is isometrically isomorphic to `1(G,L1(K)). To see this, we recall for an
element f ∈ `1(G,L1(K)) we put fs := f(s) ∈ L1(K). Now, define a map Φ : L1(E)→ `1(G,L1(K)) as follows

Φ(ξ)s(k) := δsξ(k, s)

It’s immediate to check that Φ is linear and that ‖Φ(ξ)‖`1 = ‖ξ‖1. To check that Φ is surjective, take any f ∈
`1(G,L1(K)) and define ξf : E → C by

ξf (k, s) := δs−1fs(k)

Then,

‖ξf‖1 =
∑
s∈G
‖fs‖1 = ‖f‖ <∞

so ξf ∈ L1(E) and clearly Φ(ξf ) = f . We can then use the convolution and involution on L1(E) to make `1(G,L1(K))
into a ∗-Banach algebra, which we will denote `1(G,L1(K), α, γ). Indeed, for f, g ∈ `1(G,L1(K)) set

(f ∗ g)s(k) :=
∑
t∈G

δt

∫
K

ft(l)gt−1s(βt−1(l−1k)α(t−1, t)−1α(t−1, s)dl

Since α ∈ Z2(G,Z), we have α(t−1, s) = α(t−1, t)βt−1(α(t, t−1s)−1), so ww have

(f ∗ g)s(k) =
∑
t∈G

δt

∫
K

ft(l)gt−1s(βt−1(l−1kα(t, t−1s)−1))dl =
∑
t∈G

∫
K

ft(l)γt(gt−1s)(l
−1kα(t, t−1s)−1)dl

Now recall that, if working over the measure algebra M(K), we can multiply elements in Z by elements in L1(K) and
get back an element of L1(K) (as we did in 2.2). We then actually have

(f ∗ g)s =
∑
t∈G

ftγt(gt−1s)α(t, t−1s)

For the involution we get
f∗s (k) := fs−1(βs−1(k−1)α(s−1, s)−1)∆(k−1)δs−1

Again, since α is a 2-cocycle, it follows that α(s−1, s)−1 = βs−1(α(s, s−1)−1), so that

f∗s (k) = fs−1(βs−1(k−1α(s, s−1)−1)∆(k−1)δs−1 = γs(fs−1)(k−1α(s, s−1)−1)∆(k−1)

Thus, going up again to the measure algebra M(K) (involution here is µ∗(U) := µ(U−1) and therefore ν∗k = νk−1 for
any k ∈ K) we actually have

f∗s = γs(fs−1)?α(s, s−1)∗

5



The Banach ∗-algebra `1(G,A, α, γ)

2.4

We give the analog of the previous section when we take a C∗-algebra A in place of L1(K). As before G is a discrete
group, where e ∈ G denotes the identity element for G. We also suppose that we are given an action of G on A; that
is a homomorphism γ : G → Aut(A). Moreover, we can regard A∗∗ as the enveloping Von-Neumann algebra of A.
Indeed, A sits inside of A∗∗ via i : A ↪→ A∗∗, where i(a)(ϕ) = ϕ(a) for any ϕ ∈ A∗. It’s known that i(A) is weakly-∗
dense in A∗∗. Then, since the C∗-algebraic operations are continuous, they extend to A∗∗. These extensions turn A∗∗

into a Banach algebra; the C∗ identity also extends, making A∗∗ into a unital C∗-algebra. Let Z be the center of A∗∗

and define
C := {ω ∈ Z : i(a)ω ∈ i(A) ∀ a ∈ A}

It’s clear that C is a sub C∗-algebra of A∗∗. We set Cu to be the subgroup of C consisting of unitary elements. Since
for any u ∈ Cu and a ∈ A, we have that i(a)u = ui(a) ∈ i(A), we see the product i(a)u = ui(a) as an element of A
and simply write ua = au ∈ A. Moreover, we regard Cu as a G-module using the dual action induced by γ. We write
the action of s ∈ G on u ∈ Cu by βs(u). This action is compatible with the given action in the following sense

γs(ua) = βs(a)γs(a) = γs(a)βs(u) = γs(au)

Let α ∈ Z2(G,Cu) be normalized. We now define `1(G,A, α, γ) as the set `1(G,A) with the following multiplication
and involution: For f, g ∈ `1(G,A) we set

(fg)s :=
∑
t∈G

ftγt(gt−1s)α(t, t−1s)

and
f∗s := γs(fs−1)?α(s, s−1)∗

These two operations are motivated from the ones we already had in `1(G,L1(K), α, γ). Furthermore, since each
α(s, t) is a unitary operator and each γs an automorphism of A, we have

‖fg‖1 =
∑
s∈G

∥∥∥∥∥∑
t∈G

ftγt(gt−1s)α(t, t−1s)

∥∥∥∥∥ ≤∑
s∈G

∑
t∈G
‖ft‖‖gt−1s‖ = ‖f‖1‖g‖1

and
‖f∗‖1 =

∑
s∈G
‖γs(fs−1)α(s, s−1)∗‖ =

∑
s∈G
‖fs−1‖ = ‖f‖1

Thus the product and involution are well defined. To prove that we actually get a Banach ∗-algebra, notice that the
dense subset k(G,A) = k(G)⊗A, of finitely supported functions, is closed under the given multiplication

(χs ⊗ a)(χt ⊗ b) = χst ⊗ (aγs(b)α(s, t))

A direct check also gives
(χs ⊗ a)∗ = χs−1 ⊗ (γs−1(a∗)α(s−1, s)∗)

from where we get (χs ⊗ a)∗∗ = (χs ⊗ a) and [(χs ⊗ a)(χs ⊗ b)]∗ = (χs ⊗ b)∗(χs ⊗ a)∗. As a consequence one gets
that `1(G,A, α, γ) is indeed a Banach ∗-algebra. Moreover, `1(G,A, α, γ) separable whenever G is countable and A
separable.

Notice that A sits as a subalgebra of `1(G,A, α, γ) via the map a 7→ (χe⊗ a). Assume (aλ)λ∈Λ is an approximate unit
for A. Then, (χ1 ⊗ aλ)λ∈Λ is an approximate unit for `1(G,A, α, γ).

2.5

We now show that `1(G,A, α, γ) only depends of the class of α in H2(G,Cu). Indeed, assume that α′ ∈ Z2(G,Cu)
is such that [α] = [α′] ∈ H2(G,Cu). Then, there is a normalized σ ∈ C1(G,Cu) (that is a map σ : G → Cu with
σ(e) = 1Cu) such that

α′(s, t)α(s, t)∗ = (d2σ)(s, t)

for ant s, t ∈ G. That is,
α′(s, t) = α(s, t)βs(σ(t))σ(st)∗σ(s)

We claim that `1(G,A, α, γ) and `1(G,A, α′, γ) are isomorphic as Banach ∗-algebras. To prove this claim, we consider
the map Φ : `1(G,A, α, γ)→ `1(G,A, α′, γ) given by

Φ(f)s := σ(s)∗fs
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Since σ(s) is unitary, it’s clear that Φ is an ismorphism of `1(G,A) into itself. To show that it is a Banach ∗-algebra
isomorphism from `1(G,A, α, γ) to `1(G,A, α′, γ), it suffices to show that multiplication and involution are preserved
when restricting to elements in the dense subspace k(G,A). Well, for any s, t ∈ G, a, b ∈ A we have

Φ((χs ⊗ a)(χt ⊗ b)) = Φ
(
χst ⊗ (aγs(b)α(s, t))

)
= χst ⊗ (aγs(b)βs(σ(t))∗σ(s)∗α′(s, t))

= χst ⊗ (σ(s)∗aγs(σ(t)∗b)α′(s, t))

= Φ((χs ⊗ a))Φ((χt ⊗ b))

and

Φ((χs ⊗ a)∗) = Φ
(
χs−1 ⊗ (γs−1(a∗)α(s−1, s)∗)

)
= χs−1 ⊗

(
σ(s−1)∗γs−1(a∗)α(s−1, s)∗)

)
= χs−1 ⊗

(
σ(s−1)∗σ(s)βs−1(γ(s))γs−1(a∗)α′(s−1, s)∗)

)
= χs−1 ⊗

(
γs−1((σ(s)∗a)∗)α′(s−1, s)∗

)
= Φ(χs ⊗ a)∗

Therefore, Φ is indeed a Banach ∗-algebra isomorphism, as claimed.

Representations of `1(G,A, α, γ)

2.6

Let (G,A, α, γ) be as above. A representation of (G,A, α, γ) is a pair (u, ρ) such that ρ : A → L(Hρ) is a non
degenerate representation of A and a map u : G→ U(Hρ) such that

usρ(a)u∗s = ρ(γs(a))

and
usut = ρ̃(α(s, t))ust

where ρ̃ is the extension of ρ to A∗∗. We observe that, since α is normalized, then it follows that ue = idHρ . When
α is trivial, the second condition is saying that u is a unitary representation of G and the pair (u, ρ) is known as a
covariant representation of (G,A, γ).

Given a representation (u, ρ) of (G,A, α, γ), we define4 π : `1(G,A, α, γ)→ L(Hρ) by

π(f) :=
∑
s∈G

ρ(fs)us

We claim that π is a non-degenerate representation of `1(G,A, α, γ) on Hρ. To see this, notice first that

‖π(f)‖ ≤
∑
s∈G
‖ρ(fs)us‖ ≤

∑
s∈G
‖ρ(fs)‖ ≤

∑
s∈G
‖fs‖ = ‖f‖1

Thus, π is a well defined continuous linear map. To show that π is indeed a representation, suffices to show that is
multiplicative and preserves the involution on elements of k(G,A). Well, for any s, t ∈ G, a, b ∈ A we have

π((χs ⊗ a)(χt ⊗ b)) = π
(
χst ⊗ (aγs(b)α(s, t))

)
= ρ(aγs(b)α(s, t))ust

= ρ(a)ρ(γs(b))ρ̃(α(s, t))ust

= ρ(a)ρ(γs(b))usut

= ρ(a)usρ(b)ut

= π(χs ⊗ a)π(χt ⊗ b)

and

π((χs ⊗ a)∗) = ρ(γs−1(a∗)α(s−1, s)∗)us−1

= ρ̃(α(s−1, s)∗)ρ(γs−1(a∗))us−1

= ρ̃(α(s−1, s)∗)us−1ρ(a∗)

= (u∗s−1 ρ̃(α(s−1, s))∗ρ(a∗)

= u∗sρ(a∗)

= (ρ(a)us)
∗

= π(χs ⊗ a)∗

4A modern notation for π is π = u n ρ
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We still need to check that π is non degenerate. Since ρ is non degenerate, if (aλ)λ∈Λ is an approximate identity for
A, we have that

‖ρ(aλ)ξ − ξ‖ → 0

for any ξ ∈ Hρ. Then,
‖π(χe ⊗ aλ)ξ − ξ‖ = ‖ρ(aλ)ueξ − ξ‖ = ‖ρ(aλ)ξ − ξ‖ → 0

for any ξ ∈ Hρ. Therefore, π is also non degenerate.

2.7

Turns out that any non degenerate representation of `1(G,A, α, γ) arises uniquely from a representation (u, ρ) of
(G,A, α, γ) in the above fashion. Indeed, if π : `1(G,A, α, γ) → L(Hπ) is non degenerate, since A sits inside of
`1(G,A, α, γ) we can define

ρ := π|A : A→ L(Hπ)

Once checks that ρ is a non degenerate representation of A such that usρ(a)u∗s = ρ(γs(a)) for any s ∈ G, a ∈ A. If
(aλ)λ∈Λ is an approximate identity for A, we define u : G→ L(Hπ) by letting

usξ := lim
λ
π(χs ⊗ aλ)ξ

for any s ∈ G, ξ ∈ Hρ. One checks that us ∈ U(Hπ) for any s ∈ G and that usut = ρ̃(α(s, t))ust for any s, t ∈ G.
Moreover, this is independent of the approximate identity chosen. This gives that π = un ρ, as wanted.

As a consequence of this we find that if π = unρ is injective on k(G,A), then ρ is injective. This follows at once from
the following estimate

‖π(χs ⊗ a)‖ = ‖ρ(a)us‖ ≤ ‖ρ(a)‖

Crossed Products of A by G

2.8

Let (G,A, α, γ) be as above and define Π as the collection of all non degenerate representations of `1(G,A, α, γ). In
what follows, we will ignore the set theoretic problem that Π might not be a set. For f ∈ `1(G,A, α, γ) define

N(f) := sup
π∈Π
‖π(f)‖

This gives a sub multiplicative seminorm on `1(G,A, α, γ). Moreover, note that N(f∗) = N(f) and N(f∗f) = N(f)2,
so we actually have a C∗-seminorm. We define the crossed product of A by G, denoted C∗(G,A, α, γ), as the
enveloping C∗-algebra of (`1(G,A, α, γ), N).

We get an isometric copy of A inside of C∗(G,A, α, γ) via the map a 7→ χe ⊗ a

We saw in 2.5 that `1(G,A, α, γ) is only depends (up to isomorphism) of the chohomology class of α in H2(G,Cu).
Therefore, C∗(G,A, α, γ) only depends (up to isomorphism) of the chohomology class of α in H2(G,Cu).

2.9

As a particular case we take A = C. The action of G on C is the trivial action; that is γs(a) = a for all s ∈ G. We
can then omit γ from our notation. Further, here Cu = S1 = {a ∈ C : |a| = 1}. For a 2-cocycle α ∈ Z2(G,S1), we say
that an α-representation of (G,C) is a map u : G→ U(H), for a Hilbert space H, such that

usut = α(s, t)ust

for all s, t ∈ G. Then, C∗(G,C, α) is the universal C∗-algebra for α-representations of G. If α is the trivial 2-cocycle,
then α-representations are simply unitary representations of G. Then, C∗(G,C, α) is the universal C∗-algebra for
unitary representations of G; which is commonly known as the group C∗-algebra of G, denoted simply by C∗(G).
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[1] G. Zeller-Meier. Produits croisés d’une C*-algèbre par un groupe d’automorphismes. J. Math. Pures Appl. (9), vol.
47: pp. 101–239, 1968.

Department of Mathematics, University of Oregon, Eugene OR 97403-1222, USA.
E-mail address: alonsod@uoregon.edu

8

mailto:alonsod@uoregon.edu

	Notation and Preliminaries
	Crossed Products of a C*-algebra by a discrete group of automorphisms.
	L1 algebras of some group extensions of a discrete group by a locally compact group 
	
	
	

	The Banach *-algebra 1(G, A, , )
	
	

	Representations of 1(G, A, , )
	 
	 

	Crossed Products of A by G
	
	

	References

