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Abstract

The main goal of this document is for me to have some kind of guide for my oral exam. This document contains
basic results on C∗-algebras and K-theory of C∗-algebras. The principal references are Murphy and Wegge-Olsen.
This is a work in progress, little proofreading has been done and it’s possible it contains some typos/mistakes.
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1 Basic Definitions

Let A be a C∗-algebra. Asa := {a ∈ A : a∗ = a}. An element a ∈ A is normal if a∗a = aa∗. A projection is an element
p ∈ Asa such that p2 = p. We say that v ∈ A is a partial isometry when v∗v is a projection.

1.1 Unital

If A is unital, Inv(A) is the set of invertible elements in A. For a ∈ A, σ(a) := {λ ∈ C : λ− a 6∈ Inv(A)}. A unitary is
an element u ∈ A such that u∗u = uu∗ = 1. An isometry is an element s ∈ A for which s∗s = 1, a coisometry is an
element s ∈ A such that s∗ is an isometry.

1.2 Unitization

If A is not unital, Ã = A × C is its unitization which is again a C∗-algebra when equipped with the correct norm.
When dealing with K-theory we will find it useful to define A+ to be Ã when A is not unital but A⊕C for unital A.
In any case we get a split exact sequence

0 A A+ C 0ι π

σ

where ι(a) := (a, 0); π(a, λ) := λ and σ(λ) := (0, λ). Furthermore, if ϕ : A→ B a ∗-homomorphism there is a unique
∗-homomorphism ϕ+ : A+ → B+ given by ϕ∗(a, λ) = (ϕ(a), λ).

2 Spectral theory and Functional Calculus

Theorem 2.1. Let A,B be C∗-algebras and ϕ : A→ B a ∗-homomorphism. Then, ϕ is norm decreasing.

Proof. We assume that A and B are unital (otherwise work with ϕ̃ : Ã→ B̃). We can further assume that ϕ(1) = 1
(∗-homomorphisms are not assumed to be unital, however if A has a unit, then ϕ(1) is the unit for ϕ(A), otherwise
ϕ̃(1Ã) = 1B̃). Then, it’s easy to see that σ(ϕ(a)) ⊆ σ(a) for any a ∈ A. Thus,

‖ϕ(a)‖2 = ϕ(a∗a)‖ = r(ϕ(a∗a)) ≤ r(a∗a) = ‖a∗a‖ = ‖a‖2.

That is, ϕ is norm decreasing as wanted. �

Theorem 2.2. Let A,B be C∗-algebras and ϕ : A→ B an injective ∗-homomorphism. Then, ϕ is isometric.

Proof. We first show this for the particular case that A and B are commutative unital C∗-algebras. That is, assume
A = C(X) and B = C(Y ) for compact Hausdorff spaces X and Y . We already know that X ∼= Max(C(X)) via
x 7→ evx where evx(f) = f(x). Since ϕ is injective, the induced map ϕ∗ : Max(C(Y )) → Max(C(X)) given by
ϕ(evy) := evy ◦ ϕ is surjective. Hence,

‖ϕ(f)‖∞ = sup
y∈Y
|ϕ(f)(y)| = sup

y∈Y
|(evy ◦ ϕ)(f)| = sup

x∈X
|evx(f)| = sup

x∈X
|f(x)| = ‖f‖∞

For general C∗-algebras A and B, we only need to show that ‖ϕ(a∗a)‖ = ‖a∗a‖. We can do this by working over Ã,
using instead the commutative unital C∗-algebra C∗(a∗a, 1) and the map ϕ̃ : C∗(a∗a, 1) → ϕ̃(C∗(a∗a, 1)). Thus the
general case follows from the particular one above. �

The previous result will be useful to show that the image of a ∗-homomorphism is a C∗-algebra, but we need to know
first that closed ideals of A are also C∗-algebras and we need more than just spectral theory to achieve that goal. See
Theorem 4.7 below.

3 Positive Elements of C∗-algebras

Definition 3.1. An element a ∈ A is called positive, in symbols a ≥ 0, if σ(a) ⊂ R≥0 and a = a∗. The positive
cone of A is the set

A≥0 := {a ∈ A : a ≥ 0} ⊂ Asa

It follows from functional calculus that each a ∈ A≥0 has a unique positive square root, which we denote by
√
a. Of

course (
√
a)2 = a. If b ∈ Asa, then by functional calculus b2 ∈ A≥0, so it makes sense to define |b| :=

√
b2 ∈ A≥0.

The following lemma shows that any C∗ algebra is spanned by positive elements.
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Lemma 3.2. Any element of A can be written as a linear combination of four positive elements. In particular, any
b ∈ Asa can be uniquely written as b = b+ − b− where b+, b− ∈ A≥0 are such that b+b− = b−b+ = 0.

Proof. We start with the particular case. Define b+ := 1
2 (|b| + b) and b− := 1

2 (|b| − b). It’s clear that b = b+ − b−
and that b+b− = b−b+ = 0 follows because b commutes with |b| (by functional calculus). To see that b+, b− ∈ A≥0,
suffices to check that their spectrum is in R≥0. This is also follows using functional calculus because the functions
σ(b)→ R given by t 7→ |t| ± t clearly have positive range. Now for a general a ∈ A we can always write a = a1 + ia2

for a1, a2 ∈ Asa. The desired result follows from the particular case. �

The following lemma shows that any unital C∗ algebra is spanned by unitary elements.

Lemma 3.3. Any element of A (unital) can be written as a linear combination of unitaries. In particular, any b ∈ Asa

can be written as the linear combination of two unitaries.

Proof. As in the previous lemma, it’s enough to prove the result for the particular case. If b = 0 the result is obvious.
For b 6= 0 put a := b‖b‖−1, whence a ∈ Asa has norm 1. By spectral theroy σ(a) ⊂ [−1, 1] and therefore 1− a2 ∈ A≥0.

Let u := a+ i
√

1− a2. A direct computation shows that u is unitary and that u+u∗ = 2a. Therefore, b = ‖b‖
2 (u+u∗),

as wanted. �

Turns out that A≥0 = {a∗a : a ∈ A}. The inclusion ⊆ follows at once from the existence of a positive square root.
The reverse inclusion is the content of the following important theorem.

Theorem 3.4. If a ∈ A, then a∗a ∈ A≥0

Proof. The key step is to show that if −c∗c ∈ A≥0 for c ∈ A, then c = 0. We omit this part. Now since a∗a ∈ Asa we
get a∗a = (a∗a)+ − (a∗a)−. Put c = a(a∗a)− and notice that −c∗c = (a∗a)3

− ∈ A≥0. Hence, a∗a = (a∗a)+ ∈ A≥0. �

Using the previous theorem it makes sense to define |a| :=
√
a∗a for any a ∈ A. This agrees with the previous definition

of the absolute value for self adjoint elements of A.

We make Asa into a poset by defining a ≤ b to mean b− a ∈ A≥0. This relation is translation invariant, that is a ≤ b
implies that a+ c ≤ b+ c for any a, b, c ∈ Asa. Below, we list the most important properties of this relation

Proposition 3.5. Let A be a C∗-algebra and a, b ∈ Asa

1. If A is unital and A≥0, then a ≤ ‖a‖.

2. If a, b ∈ A≥0, then a+ b ∈ A≥0.

3. If a, b ∈ A≥0 are such that ab = ba, then ab ∈ A≥0.

4. If a ≤ b, then ta ≤ tb for all t ∈ R≥0 and −b ≤ −a.

5. If a ≤ b, and c ∈ A then c∗ac ≤ c∗bc.

6. If 0 ≤ a ≤ b, then ‖a‖ ≤ ‖b‖.

7. If A is unital and a, b ∈ Inv(A) are such that 0 ≤ a ≤ b, then 0 ≤ b−1 ≤ a−1.

8. If 0 ≤ a ≤ b, then
√
a ≤
√
b

Warning: It’s not true that 0 ≤ a ≤ b implies that a2 ≤ b2. For example, in A = M2(C) consider the projections

p =

(
1 0
0 0

)
and q =

1

2

(
1 1
1 1

)
Then, σ(q) = {0, 1}, whence p ≤ p+ q. However, since σ(pq+ qp+ q) = { 1

2 (2 +
√

5), 1
2 (2−

√
5)} 6⊂ R≥0, it follows that

p = p2 6≤ (p+ q)2 = p+ pq + qp+ q.

It can be shown that if 0 ≤ a ≤ b implies that a2 ≤ b2 for all a, b ∈ A, then A is commutative.

4 Approximate Units and ideals

Definition 4.1. An approximate unit for a C∗-algebra A is an increasing net (eλ)λ∈Λ of positive elements in the
closed unit ball of A such that a = limλ aeλ for all a ∈ A. Equivalently, a = limλ eλa for all a ∈ A.
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For some C∗-algebras is easy to find an approximate unit. For example look at A := K(`2). Let (δk)∞k=1 the usual
basis for `2. For each n ∈ Z>0 write

pn

( ∞∑
k=1

αkδk

)
:=

n∑
k=1

αkδk

For any x ∈ `2 we have ‖pn(x) − x‖2 → 0. We claim that (pn)n∈Z>0
is an approximate unit for A. It’s clear that

p∗n = p2
n = pn and since pn has finite rank, we must have that pn ∈ A. Thus, each pn is a positive element in A with

‖pn‖ ≤ 1. A direct check shows that pm−pn = (pm−pn)2 ≥ 0 for m ≥ n, whence pn ≤ pm. This gives that (pn)∞n=1 is
indeed an increasing sequence of positive elements in the closed unit ball of A. We have to show that ‖pnu−u‖ → 0 for
any u ∈ K(`2). However, since the set of finite rank operators is dense in K(`2), it suffices to show that ‖pnu−u‖ → 0
for a rank one operator u : `2 → `2. Indeed, for each y, z ∈ `2 we consider the rank one operator uy,z(x) := 〈x, y〉z.
Then, ‖uy,z‖ = ‖y‖2‖z‖2 and therefore

‖pnuy,z − uy,z‖ = ‖uy,pn(z) − uy,z‖ = ‖uy,pn(z)−z‖ = ‖y‖2‖pn(z)− z‖2 → 0

as wanted.

Turns out that any C∗-algebra has an approximate unit. To see this, we will construct a canonical approximate unit.
First we need to convince ourselves that the set Λ := {a ∈ A≥0 : ‖a‖ < 1} ⊂ Asa is an upward directed set. That is,
we need to show that for any a, b ∈ Λ there is c ∈ Λ such that a ≤ c and b ≤ c. Well, we can see any element a ∈ Λ as
an element of Ã and since ‖1− (1 + a)‖ = ‖a‖ < 1, it follows that (1 + a) is invertible in Ã. Using functional calculus

is easy to see that ‖a(1 + a)−1‖ < 1
4 and that σ(a(1 + a)−1) ⊂ [0, 1

4 ). Thus, since A sits as an ideal in Ã, it follows
that a(1 + a)−1 ∈ Λ. Furthermore,

a(1 + a)−1 = (1 + a)(1 + a)−1 − (1 + a)−1 = 1− (1 + a)−1

So suppose that d ∈ Λ is such that 0 ≤ a ≤ d, then 1 +a ≤ 1 +d and, by Proposition 3.5, 1− (1 +a)−1 ≤ 1− (1 +d)−1

which in turn implies that a(1 + a)−1 ≤ d(1 + d)−1. Finally, for any a, b ∈ Λ we use functional calculus to define
a′ := a(1− a)−1 ∈ A≥0 and b′ := b(1− b)−1 ∈ A≥0. Then, a′ + b′ ∈ A≥0, so if we define c := (a′ + b′)(1 + a′ + b′)−1

functional calculus shows that ‖c‖ < 1 and therefore c ∈ Λ. Clearly a′ ≤ a′ + b′ so we must have a′(1 + a′)−1 ≤ c and
similarly b′(1 + b′)−1 ≤ c. The desired result follows by observing that a = a′(1 + a′)−1 and b = b′(1 + b′)−1, which
can be easily done with functional calculus

Theorem 4.2. Every C∗-algebra A has an approximate unit.

Proof. Let Λ be the upwards-directed set from above and define (eλ)λ∈Λ by putting eλ := λ. For any a ∈ Λ, using
the Gelfand representation C∗(a) → C0(σ(a)) and Urysohn’s lemma we get that a = limλ aeλ. By Lemma 3.2 we
conclude that a = limλ aeλ holds for any a ∈ A. �

Corollary 4.3. Any separable C∗-algebra admits an approximate unit which is a sequence.

Proof. Let {a1, an, . . .} a countable dense subset of A and (eλ)Λ an approximate unit for A. Write Fn := {a1, . . . , an}
and let choose λ1 ∈ Λ such that ‖a1 − aeλ1

‖ < 1.Now choose λ2 ≥ λ1 such that ‖aj − ajeλ2
‖ < 1

2 for j = 1, 2. We
proceed inductively and get an increasing sequence (λn)∞n=1 such that ‖a− aeλn‖ < 1

n for any a ∈ Fn. This says that
‖a− aeλn‖ → 0 as n→∞ for a ∈ Fn. We claim that (eλn)∞n=1 is an approximate unit for A. Indeed, take any a ∈ A
and let ε > 0. By density there is j ∈ Z>0 such that ‖a − aj‖ < ε

3 . In particular aj ∈ Fj , so there is N ∈ Z>0 such
that ‖aj − ajeλn‖ < ε

3 for all n ≥ N . Therefore,

‖a− aeλn‖ ≤ ‖a− aj‖+ ‖aj − ajeλn‖+ ‖aj − a‖‖eλn‖ <
ε

3
+
ε

3
+
ε

3
· 1 = ε

for all n ≥ N , proving our claim and finishing the proof. �

Sometimes we will need to work with approximate units inside the unitization Ã. The following observation will be
useful at least a couple of times: Suppose e ∈ A≥0 is such that ‖e‖ ≤ 1 then ‖1 − e‖ ≤ 1. Indeed, by functional
calculus σ(1− e) ⊂ (0, 1]. We will then use that ‖1− eλ‖ ≤ 1 whenever (eλ)λ∈Λ is an approximate unit.

We now turn our attention to ideals. Having an approximate unit is quite helpful to show that closed two-sided ideals
of a C∗-algebra are in fact self adjoint. This will imply some other crucial facts. First a lemma.

Lemma 4.4. Let J be a closed left ideal in A. Then there is an increasing net (eλ)λ∈Λ of positive elements in the
closed unit ball of J such that a = limλ aeλ for all a ∈ J .
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Proof. Since J ∩ J∗ is a C∗-algebra it admits an approximate unit. Say (eλ)λ∈Λ where each eλ is a positive element
of the closed unit ball of J . Take any a ∈ J . Then a∗a ∈ J ∩ J∗ and therefore limλ(aa∗)eλ = aa∗. Then, working on

Ã if necessary, we have

‖a− aeλ‖2 = ‖(a− aeλ)∗(a− eλ)‖ = ‖(1− eλ)a∗a(1− eλ)‖ ≤ ‖1− eλ‖‖a∗a− a∗aeλ‖ ≤ ‖a∗a− a∗aeλ‖

This proves that a = limλ aeλ for any a ∈ J . �

Theorem 4.5. If I is a closed ideal in A, then I is selfadjoint and therefore a C∗-subalgebra of A.

Proof. Let a ∈ I and (eλ)λ∈Λ be the net in I given by the previous Lemma. Then, eλa
∗ ∈ I for all λ ∈ Λ, whence

a∗ =

(
lim
λ
aeλ

)∗
= lim

λ
(aeλ)∗ = lim

λ
eλa
∗

since I is closed, this proves that a∗ ∈ I, so we are done. �

If I is a closed ideal in A, then A/I is a Banach algebra with the quotient norm. Since I is selfadjoint, A/I is also a
∗-algebra. But is A/I a C∗-algebra? The answer is yes but we need to know first a way to easily compute the norm
using (eλ)λ∈Λ, an approximate unit for I. Well, let ε > 0 and a ∈ A. There is b ∈ I such that ‖a+ b‖ < ‖a+ I‖+ ε

2 .

Choose λ0 ∈ Λ such that ‖b− eλb‖ < ε
2 for all λ ≥ λ0. Then, working on Ã if necessary, we have that for any λ ≥ λ0,

‖a− eλa‖ ≤ ‖a+ b− eλ(a+ b)‖+ ‖beλ − b‖ = ‖(1− eλ)(a+ b)‖+ ‖beλ − b‖ ≤ ‖(a+ b)‖+ ‖beλ − b‖ < ‖a+ I‖+ ε

This gives limλ ‖a− eλa‖ ≤ ‖a+ I‖. Since eλa ∈ I for all λ ∈ Λ, it follows that ‖a+ I‖ ≤ limλ ‖a− eλa‖. All together
gives

‖a+ I‖ = lim
λ
‖a− eλa‖ = lim

λ
‖a∗ − a∗eλ‖ = ‖a∗ + I‖

This gives a nice way to express the norm ‖a + I‖ for any a ∈ A, which is used two times to show that A/I is a
C∗-algebra:

Theorem 4.6. If I is a closed ideal in A, then A/I is a C∗-algebra.

Proof. The only thing that we don’t have yet is the C∗-identity. Well, we just proved that ‖a+ I‖ = ‖a∗ + I‖ for all
a ∈ A. Hence, it suffices to show that ‖a+ I‖2 ≤ ‖a∗a+ I‖ for any a ∈ I. Indeed,

‖a+ I‖2 = lim
λ
‖a− eλa‖2 = lim

λ
‖(1− eλ)a∗a(1− eλ)‖ ≤ lim

λ
‖a∗a− a∗aeλ‖ = ‖a∗a+ I‖

as wanted. �

Theorem 4.7. Let A,B be C∗-algebras and ϕ : A→ B a ∗-homomorphism. Then, ϕ(A) is a C∗-subalgebra of B.

Proof. Well, now that we know that A/ ker(ϕ) is a C∗-algebra, we see that ϕ induces an injective ∗-homomorphism
A/ ker(ϕ) → B via a + ker(ϕ) 7→ ϕ(a). This map is clearly inyective so it’s isometric thanks to Theorem 2.2. Thus,
it’s image ϕ(A) is a closed subalgebra of B. �

4.1 Essential Ideals

Definition 4.8. We say that a closed ideal I in A is an essential ideal if aI = 0 implies that a = 0. Equivalently, I
is essential if I ∩ J 6= {0} for all non-zero closed ideals J in A.

Let I be a closed ideal I and for any a ∈ I we define La, Ra ∈ L(I) by La(b) = ab and Ra(b) = ba for any b ∈ I. Using
the canonical inclusion I ↪→ M(I) sending a ∈ I to (La, Ra) we see that I is an essential ideal of M(I). Further,
I ↪→M(I) extends to ϕ : A→M(I) where ϕ(a) := (La, Ra). It’s easy to see that ϕ is the only extension and that ϕ
is injective whenever I is essential in A.

Example 4.9. Below H is a Hilbert space and X a locally compact Hausdorff space.

1. K(H) is an essential ideal in L(H) and the extension ϕ : L(H)→M(K(H)) is a ∗-isomorphism.

2. C0(X)) is an essential ideal in Cb(X) and the extension ϕ : Cb(X)→M(C0(X)) is a ∗-isomorphism.
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4.2 Hereditary Subalgebras

Ideals in C∗-algebras are a special case class of C∗-subagebras, the hereditary ones:

Definition 4.10. We say that a C∗-subalgebra B of A is hereditary if for a ∈ A≥0, b ∈ B≥0 the inequality a ≤ b
implies a ∈ B.

Obviously, the subalgebras A and {0} of A are hereditary and any the intersection of hereditary subalgebras is again
hereditary. If S ⊂ A, then the hereditary subalgebra generated by S is the smallest hereditary C∗-subalgebra of A
containing S.

Example 4.11. Let p ∈ A be a projection. Then the C∗-subalgebra pAp is hereditary. Indeed, suppose a ∈ A≥0 is
such that 0 ≤ a ≤ pbp for some b. Then, from Theorem 3.5 it follows that

0 ≤ (1− p)a(1− p) ≤ (1− p)pbp(1− p) = 0

Hence, (1− p)a(1− p) = 0 and therefore ‖a1/2(1− p)‖2 = 0 by the C∗-identity. This gives a(1− p) = 0 and therefore
a = ap and taking involution gives a = pa. Therefore, a = pap ∈ pAp.

Hereditary subalgebras are in one-to-one correspondence with closed left ideals. This fact has many useful conse-
quences, some of which we list in the Corollary following the next Theorem

Theorem 4.12. Define L := {J ⊂ A : J is a closed left ideal } and H := {B ⊂ A : B is a hereditary C∗-subalgebra }.
Then,

1. The map J 7→ J ∩ J∗ is a bijection L→ H. The inverse map is B 7→ {a ∈ A : a∗a ∈ B}.

2. If J1, J2 ∈ L, then J1 ⊂ J2 if and only if J1 ∩ J∗1 ⊂ J2 ∩ J∗2 .

Corollary 4.13. Let A be C∗-algebra. Then,

1. A C∗-subalgebra B is hereditary if and only if bab′ ∈ B for all b, b′ ∈ B and all a ∈ A.

2. Any closed ideal of A is a hereditary C∗-subalgebra.

3. For any a ∈ A≥0, aAa is the hereditary C∗-subalgebra generated by {a}.

4. If B is a separable hereditary C∗-subalgebra, there is a ∈ A≥0 such that B = aAa.

5. If J is a closed ideal of a hereditary C∗-subalgebra B, there is a closed ideal I in A such that J = I ∩B.

6. If A is simple and B is a hereditary C∗-subalgebra, then B is simple.

Example 4.14. We show that the last assertion is not true for non hereditary C∗-subalgebra. It’s known that K(H)
is simple (any non-zero ideal of K(H) is an ideal of L(H) that contains the finite rank operators), however if p, q are
finite rank orthogonal projections then Cp+ Cq is a non-simple C∗-subalgebra of K(H) for it contains the non trivial
closed ideal Ap = Cp.

5 Positive Linear Functionals and the GNS representation.

Definition 5.1. A linear map ϕ : A→ B between C∗-algebras is positive if ϕ(A≥0) ⊂ B≥0.

If ϕ : A→ B is positive, then ϕ(a1) ≤ ϕ(a2) whenever a1 ≤ a2 and by Lemma 3.2 ϕ(Asa) ⊂ Bsa.

Definition 5.2. A positive linear map τ : A → C is also called a positive linear functional. If τ is a bounded
positive linear functional with ‖τ‖ = 1 we say τ is a state on A. We denote by S(A) the set of states of A.

Definition 5.3. A positive linear functional τ : A → C is called a trace if τ(ab) = τ(ba) for all a, b ∈ A. A trace
which is also a state is called a tracial state.

Example 5.4. .

1. Ever ∗-homomorphism ϕ : A→ B is positive.

2. Let X be a locally compact group and µ a regular Borel measure on X. The linear functional Cc(X) 7→ C given
by f 7→

∫
X
fdµ is positive (and not a homomorphism). This is a trace and it’s a tracial state if µ(X) = 1.

3. The linear functional Tr : Mn(C)→ C where Tr(a) is the usual trace of the matrix a is positive. The normalized
trace on Mn(C) is also positive and it’s given by tr(a) := 1

nTr(a), so tr is a tracial state.
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4. Let H be a Hilbert space and ξ ∈ H \ {0}. The map a 7→ 〈aξ, ξ〉 is a positive linear functional on L(H), but is
not a trace in general. This map is a state when ‖ξ‖ = 1.

Proposition 5.5. Let τ : A→ C be a positive linear functional on A. The map A×A→ C given by (a, b) 7→ τ(b∗a)
is a positive sesquilinear form on A.

Proof. Sesquilinerarity follows immediately. Since τ is positive τ(a∗a) ≥ 0 and therefore the form is positive, �

Corollary 5.6. Let τ : A→ C be a positive linear functional on A. Then, τ(b∗a) = τ(a∗b), |τ(b∗a)| ≤ τ(a∗a)1/2τ(b∗b)1/2

and a 7→ τ(a∗a)1/2 is a seminorm in A.

Lemma 5.7. Any positive linear functional on A is bounded.

Proof. Let τ : A → C be a positive linear functional. We claim that there is a positive constant M such that
|ϕ(a)| ≤ M for all a ∈ A≥0 with ‖a‖ ≤ 1. Assume otherwise that no such M exists. Then, for each n ∈ Z>0, there

exists an ∈ A≥0 with ‖an‖ = 1 such that τ(an) ≥ n. Consider bk =
∑k
n=1

an
n2 ∈ A≥0 and a = limk→∞ bk ∈ A≥0.

Then, a ≥ bk and therefore τ(a) ≥
∑k
n=1

τ(an)
n2 =

∑k
n=1

1
n →∞, a contradiction. The claim is proved. If a ∈ A with

‖a‖ = 1 then a = b + ic with b, c ∈ Asa and ‖b‖, ‖c‖ ≤ 1. We now use Theorem 3.2 with our previous claim to get
|τ(a)| ≤ 4M , whence ‖τ‖ ≤ 4M . �

Lemma 5.8. Let τ : A→ C be a positive linear functional on A. Then, τ(a∗) = τ(a) and |τ(a)|2 ≤ ‖τ‖τ(a∗a) for all
a ∈ A.

Proof. Let (eλ)λ∈A be an approximate unit for A. Then, using Corollary 5.6

τ(a) = lim
λ
τ(eλa) = lim

λ
τ(a∗eλ) = τ(a∗)

and
|τ(a)|2 = lim

λ
|τ(eλa)| ≤ lim

λ
τ(e2

λ)τ(a∗a) ≤ lim
λ
‖τ‖‖e2

λ‖τ(a∗a) ≤ ‖τ‖τ(a∗a)

as desired. �

Theorem 5.9. Let τ ∈ A∗. The following are equivalent

(a) τ is positive.

(b) For each approximate unit (eλ)λ∈Λ of A, ‖τ‖ = limλ τ(eλ).

(c) For some approximate unit (eλ)λ∈Λ of A, ‖τ‖ = limλ τ(eλ).

Corollary 5.10. Let A be C∗-algebra. Then,

1. If A is unital, then τ ∈ A∗ is positive if and only if ‖τ‖ = τ(1).

2. If τ, τ ′ are positive linear functions on A, then ‖τ + τ ′‖ = ‖τ‖+ ‖τ ′‖.

Theorem 5.11. If a is a normal element of A 6= {0}, there is τ ∈ S(A) such that ‖a‖ = |τ(a)|.

Proof. Suppose a 6= 0, otherwise any state works. Look at the commutative unital C∗-algebra B := C∗(1, a) in Ã.
Then, since Max(B) is compact there is ω0 ∈ Max(B) such that

‖a‖ = ‖â‖∞ = sup
ω∈Max(B)

|ω(a)| = |ω0(a)|,

and of course ‖ω0‖ = 1. By Hahn-Banach, there is ω1 : Ã → C such that ω1|B = ω0 and ‖ω1‖ = 1. We claim that
τ := ω1|A is the state we are looking for. Indeed, since ω1(1) = 1 the previous Corollary gives that ω1 is positive and
therefore τ is positive. Since τ(a) = ω0(a) = ‖a‖, we only need to check that τ has norm 1. Well, for any a′ ∈ A,

|τ(a′)| = |ω1(a′)| ≤ ‖a′‖, whence ‖τ‖ ≤ 1. For the reverse inequality, we have ‖τ‖ ≥ |τ( a
‖a‖ )| =

|τ(a)|
‖a‖ = 1. �

Theorem 5.12. Let τ be a positive linear functional on A. Then,

1. For any a ∈ A, τ(a∗a) = 0 if and only if τ(ba) = 0 for all b ∈ A.

2. τ(b∗a∗ab) ≤ ‖a∗a‖τ(b∗b) for all a, b ∈ A.
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Proof. For 1, the “if” part is obvious. For the “only if” part, we use Corollary 5.6: |τ(ba)| ≤ τ(a∗a)1/2τ(bb∗)1/2 = 0.
For 2, assume that τ(b∗b) > 0 (for if τ(b∗b) = 0 then by 1, τ(b∗a∗ab) = 0 and the desired result follows) and define

ρ(c) :=
τ(b∗cb)

τ(b∗b)

It’s clear that ρ is a positive linear functional, so if (eλ)λ∈Λ is an approximate unit for A we have

‖ρ‖ = lim
λ
ρ(eλ) = lim

λ

τ(b∗cb)

τ(b∗b)
=
τ(b∗b)

τ(b∗b)
= 1

Hence, |ρ(a∗a)| ≤ ‖a∗a‖, which is precisely τ(b∗a∗ab) ≤ ‖a∗a‖τ(b∗b). �

5.1 GNS construction

Definition 5.13. A representation of a C∗-algebra A is a pair (H, ϕ) where H is a Hilbert space and ϕ : A→ L(H)
a ∗-homomorphism. We that say (H, ϕ)

• is faithful if ϕ is injective.

• is cyclic if there is ξ ∈ H such that ϕ(A)ξ := span({ϕ(a)ξ : a ∈ A}) is dense in H.

• is non-degenerate if ϕ(A)H := span({ϕ(a)ξ : a ∈ A, ξ ∈ H}) is dense in H.

Let (Hλ, ϕλ)λ∈Λ a family of representations of A. Define its direct sum (H, ϕ) where

H :=
⊕
λ∈λ

Hλ and ϕ(a)(ξλ)λ∈Λ := (ϕλ(a)ξλ)λ∈Λ

Then, routine verifications show that (H, ϕ) is a representation of A and that it’s faithful if for each non-zero element
a ∈ A there is λ ∈ A such that ϕλ(a) 6= 0.

Given any positive linear functional τ : A→ C, we get a cyclic representation (Hτ , ϕτ ) via the Gelfand-Naimark-Segal
construction that we sketch below. Recall from Proposition 5.5 that (a, b) 7→ τ(b∗a) is a sesquilinear form on A. Define

Nτ := {a ∈ A : τ(b∗a) = 0 for all b ∈ A} = {a ∈ A : τ(a∗a) = 0},

where the two sets are equal by part 1 in Theorem 5.12, whereas part 2 shows that Nτ is a closed left ideal of A.
Therefore, the sesquiniliear form (a, b) 7→ τ(b∗a) descends to a well defined inner-product on the quotient vector space
A/Nτ :

〈a+Nτ , b+Nτ 〉τ := τ(b∗a)

Thus, with the norm induced by this inner-product, A/Nτ is a normed vector space. We denote by Hτ the Hilbert
space completion of A/Nτ with respect to this inner-product. For any a ∈ A we define ϕτ : A→ L(A/Nτ ) by setting

ϕτ (a)(b+Nτ ) = ab+Nτ

This map is well define for if b− c ∈ Nτ , then ab− ac = a(b− c) ∈ Nτ for any a ∈ A. Further,

‖ϕτ (a)(b+Nτ )‖2 = 〈ab+Nτ , ab+Nτ 〉τ = τ((ab)∗ab) = τ(b∗a∗ab) ≤ ‖a∗a‖τ(b∗b) = ‖a‖2‖b+Nτ‖2

Thus, ϕτ (a) extends to a bounded linear map ϕτ (a) ∈ L(Hτ ) with ‖ϕτ (a)‖ ≤ ‖a‖. The map ϕτ : A → L(Hτ ) is a
∗-homomorphism:

ϕτ (a+ αb)(c+Nτ ) = (a+ αb)(c+Nτ ) = (ac+ αb) +Nτ = ϕτ (a)(c+Nτ ) + αϕτ (b)(c+Nτ )

ϕτ (ab)(c+Nτ ) = abc+Nτ = ϕτ (a)ϕτ (b)(c+Nτ )

〈b+Nτ , ϕ(a∗)(c+Nτ )〉τ = τ((a∗c)∗b) = τ(c∗ab) = 〈ϕ(a)(b+Nτ ), c+Nτ 〉τ

Hence, (Hτ , ϕτ ) is indeed a representation for A. We now exhibit a a cyclic vector for (Hτ , ϕτ ) using an approximate
unit (eλ)λ∈Λ of A: we define ξτ := limλ(eλ +Nτ ) ∈ Hτ . Then,

ϕτ (a)ξτ = lim
λ

(aeλ +Nτ ) = a+Nτ

and since A/Nτ is dense in Hτ by construction, it follows that ϕτ (A)ξτ is dense in Hτ . Also, we can recover the
positive linear functional τ using the cyclic vector ξτ , indeed

〈ϕτ (a)ξτ , ξτ 〉τ = 〈a+Nτ , lim
λ

(eλ +Nτ )〉τ = lim
λ
τ(aeλ) = τ(a)

Hence ‖ξτ‖2 = limλ〈ϕτ (eλ)ξτ , ξτ 〉τ = limλ τ(eλ) = ‖τ‖. If τ ∈ S(A), we have ‖ξτ‖ = 1. The vector ξτ is sometimes
called the canonical cyclic vector for (Hτ , ϕτ ).
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Definition 5.14. If A 6= {0}, we define its universal representation by taking the direct sum of all the represen-
tation (Hτ , ϕτ ), where τ ranges over S(A).

Theorem 5.15. Any C∗-algebra A admits a faithful non-degenerate representation.

Proof. Let (H, ϕ) the universal representation of A, which is non-degenerate because each (ϕτ ,Hτ ) is cyclic. We
have to show that ϕ : A → L(H) is injective. Assume that ϕ(a) = 0. By Theorem 5.11 there is τ ∈ S(A) such that
τ(a∗a) = ‖a∗a‖ = ‖a‖2. Let b = (a∗a)1/4 and notice that ϕτ (b4) = ϕτ (a∗a) = ϕτ (a∗)ϕτ (a) = 0 because ϕ(a) = 0.
Hence, ϕτ (b) = 0 and

‖a‖2 = τ(a∗a) = τ(b4) = 〈b2 +Nτ , b
2 +Nτ 〉τ = ‖ϕτ (b)(b+Nτ )‖ = 0,

Therefore, a = 0, whence ϕ is injective. �

6 Representations of C∗-algebras.

Given any representation (H, ϕ) of A, if M is a closed subspace of H such that ϕ(a)(M) ⊂M for all a ∈ A (i.e. M is
an invariant subspace under ϕ) we get a map ϕM : A→ L(M) by restricting to M :

ϕM (a) := ϕ(a)|M

Then (M,ϕM ) is also a representation of A. In particular if we use M := ϕ(A)H we get ‖ϕ(a)‖ = ‖ϕM (a)‖ for all
a ∈ A. Indeed, that ‖ϕM (a)‖ ≤ ‖ϕ(a)‖ is clear, the reverse inequality follows from

‖ϕ(a)‖2 = ‖ϕ(a)ϕ(a∗)‖ = ‖ϕM (a)ϕ(a∗)‖ ≤ ‖ϕM (a)‖‖ϕ(a∗)‖ = ‖ϕM (a)‖‖ϕ(a)‖

Thus, we will often use (M,ϕM ) instead of (H, ϕ) to reduce to the case of a non-degenerate representation.

Lemma 6.1. Let (H, ϕ) be a non-degenerate representation and (eλ)λ∈Λ an approximate unit for A. Then (ϕ(eλ))λ
is an approximate unit for ϕ(A) that converges strongly to idH.

Proof. It’s clear thar (ϕ(eλ))λ is an approximate unit for ϕ(A). For ϕ(a)ξ ∈ ϕ(A)H we have

‖ϕ(eλ)ϕ(a)ξ − ϕ(a)ξ‖ = ‖ϕ(eλa)− ϕ(a)‖‖xi‖ → 0

By density ‖ϕ(eλ)ξ − ξ‖ → 0 for any ξ ∈ H. �

We now use Zorn’s lemma to show that every non-degenerate representation can be written as the direct sum of cyclic
representations.

Theorem 6.2. Let (H, ϕ) be a non-degenerate representation of A. Then (H, ϕ) is a direct sum of cyclic representa-
tions.

Proof. For each ξ ∈ H put Hξ := ϕ(A)ξ. Clearly Hξ is invariant under ϕ and if (eλ)λ∈Λ is an approximate unit for
A we have

ξ = lim
λ
ϕ(eλ)ξ ∈ ϕ(A)ξ = Hξ

Thus, (Hξ, ϕHξ , ξ) is a cyclic representation. Let S := {S ⊂ H : S 6= {0} and Hξ1 ⊥ Hξ2 ∀ ξ1 6= ξ2 in S} and order
it by set inclusion. For any ξ ∈ H we clearly have {ξ} ∈ S, whence S 6= ∅. Any totally ordered subset of S has an
upper bound in S, namely the union of all the elements in the totally ordered subsets (the totally ordered condition
implies that this union is in fact in S). Hence, by Zorn’s Lemma, S has a maximal element, call it M . We claim that
H =

⊕
ξ∈M Hξ, this will show that ϕ =

⊕
ξ∈M ϕHξ and the desired result will follow. To prove the claim, it suffices

to show that the linear span of (Hξ)ξ∈M , denoted as
∑
ξ∈M Hx is dense in H. Take any η ∈ (

∑
ξ∈M Hx)⊥, whence for

any ξ ∈M and any a, b ∈ A we have
〈ϕ(a)η, ϕ(b)ξ〉 = 〈η, ϕ(a∗b)ξ〉 = 0

This gives Hη ⊥ Hξ for all ξ ∈ M , so M ∪ {η} ∈ S, but by maximality of M we must have η = 0. This proves our
claim and we are done. �

Definition 6.3. Two representations (H1, ϕ1) and (H2, ϕ2) of A are unitarily equivalent if there is a unitary
u : H1 → H2 such that for all a ∈ A

uϕ1(a) = ϕ2(a)u

We define the set of intertwining operators from ϕ1 to ϕ2 by

C(ϕ1, ϕ2) := {v ∈ L(H1,H2) : vϕ1(a) = ϕ2(a)v ∀ a ∈ A}

Thus, (H1, ϕ1) and (H2, ϕ2) unitarily equivalent whenever C(ϕ1, ϕ2) contains a unitary operator. For a fixed repre-
sentation (H, ϕ) of A, the set C(ϕ) := C(ϕ,ϕ) consist of all the elements of L(H) that commute with ϕ(a) for all a ∈ A
and it’s called the commutant of ϕ. Sometimes C(ϕ) is denoted by ϕ(A)′.
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Proposition 6.4. Let (H1, ϕ1, ξ1) and (H2, ϕ2, ξ2) be two cyclic representations. There is a unitary u ∈ C(ϕ1, ϕ2)
with u(ξ1) = ξ2 if and only if 〈ϕ1(a)ξ1, ξ1〉 = 〈ϕ2(a)ξ2, ξ2〉 for all a ∈ A.

Proof. Suppose there is a unitary u ∈ C(ϕ1, ϕ2) with u(ξ1) = ξ2. Then,

〈ϕ(a)ξ1, ξ1〉 = 〈u∗ϕ2(a)uξ1, ξ1〉 = 〈ϕ2(a)uξ1, uξ1〉 = 〈ϕ2(a)ξ2, ξ2〉

Conversely, assume that 〈ϕ1(a)ξ1, ξ1〉 = 〈ϕ2(a)ξ2, ξ2〉 for all a ∈ A. Define u : ϕ1(A)ξ1 → H2 de letting u(ϕ1(a)ξ1) =
ϕ2(a)ξ2 and extending it linearly to ϕ1(A)ξ1. We have

‖u(ϕ1(a)ξ1)‖2 = 〈ϕ2(a)ξ2, ϕ2(a)ξ2〉 = 〈ϕ1(a)ξ1, ξ1〉 = ‖ϕ1(a)ξ1‖2

Thus, since ϕ1(A)ξ1 = H1 and ϕ2(A)ξ2, we have that u extends to a well defined unitary u : H1 → H2. Clearly
uϕ1(a) = ϕ2(a)u on ϕ1(A)ξ1, so it follows that u ∈ C(ϕ1, ϕ2). Finally, if (eλ)λ∈Λ is an approximate unit for A, then
ξ2 = limλ ϕ2(eλ)ξ2 = u(limλ ϕ(eλ)ξ1) = u(ξ1), as wanted. �

6.1 Irreducible Representations and Pure states

Definition 6.5. A representation (H, ϕ) of A is irreducible if it has no non-trivial closed invariant subspaces.

Theorem 6.6. Let (H, ϕ) be a non-zero representation of A.

1. (H, ϕ) is irreducible if and only if C(ϕ) = C1 where 1 = idH.

2. If (H, ϕ) is irreducible, then every non zero vector of H is cyclic for (H, ϕ).

Proof.

1. Suppose first that the representation is reducible. Then there is a non-trivial invariant subspace M ⊂ H. Let
pM be the orthogonal projection onto M . Invariance means ϕ(a)pM = pMϕ(a) for all a ∈ A, whence pM ∈ C(ϕ).
Since M is non-trivial, pM 6∈ C1. For the converse suppose C(ϕ) 6= C1 and take v ∈ C(ϕ) such that v 6∈ C1. By
writing v = v1 + iv2 with v1, v2 selfadjoint, we have v1, v2 ∈ C(ϕ) and we can assume that v1 6∈ C1. We must
have at least two different points in σ(v1) say t1 6= t2 (otherwise if σ(v1) = {t} using functional calculus with the
inclusion of σ(v1) in C we get v1 = t1, which is impossible). Choose f1, f2 ∈ C(σ(v1)) with disjoint support such
that fj(tk) = δj,k. Then, fj(v1) ∈ C(ϕ) (j = 1, 2) and Hj := fj(v1)H (j = 1, 2) is a non-zero invariant subspace
for ϕ. Further, since f1 and f2 have disjoint support it follows that H1 and H2 are mutually orthogonal, whence
H1 and H2 are non-trivial invariant subspaces for ϕ.

2. Let ξ be any non zero vector of H. Then, ϕ(A)ξ is invariant and non-zero because it contains ξ = limλ ϕ(eλ)ξ.
Irreducibility implies that ϕ(A)ξ = H, so (Hϕ) is indeed cyclic. �

Corollary 6.7. Let (H1, ϕ1) and (H2, ϕ2) be two irreducible representations of A. Then (H1, ϕ1) and (H2, ϕ2) are
equivalent if and only if C(ϕ1, ϕ2) is one dimensional, in fact C(ϕ1, ϕ2) = {0} whenever ϕ1 and ϕ2 are not equivalent.

Proof. If (H1, ϕ1) and (H2, ϕ2) are equivalent then there is a unitary u ∈ C(ϕ1, ϕ2) so C(ϕ1, ϕ2) 6= {0}. Take
v1, v2 ∈ C(ϕ1, ϕ2). Since v1v

∗
1 ∈ C(ϕ2), the previous theorem gives v1v

∗
1 = α1 for some α ∈ C. Similarly, v∗1v2 ∈ C(ϕ1)

so there is β ∈ C such that v∗1v2 = β1. Then, v2 = αβv1, so C(ϕ1, ϕ2) is one dimensional. Suppose now that (H1, ϕ1)
and (H2, ϕ2) are not equivalent but that C(ϕ1, ϕ2) 6= {0}. As before, for any non-zero v ∈ C(ϕ1, ϕ2) we have vv∗ = α1,
for a non-zero α ∈ C, but this says that α−1/2v is a unitary in C(ϕ1, ϕ2), making the two representation equivalent, a
contradiction. �

Definition 6.8. Let τ and ρ be positive linear functionals on A. We write ρ ≤ τ if τ −ρ is a positive linear functional.
A state τ ∈ S(A) is pure is whenever ρ is a positive linear functional such that ρ ≤ τ , it follows that ρ = tτ for some
t ∈ [0, 1]. The set of pure states on A is denoted by PS(A).

For thr following results recall that the GNS construction gives a cyclic representation (Hτ , ϕτ , ξτ ) for any positive
linear functional τ such that

• ϕτ (a)ξτ = a+Nτ

• τ(a) = 〈ϕτ (a)ξτ , ξτ 〉

• ‖ξτ‖2 = ‖τ‖.
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Lemma 6.9. Let τ ∈ S(A) and ρ a positive linear functional. Then, ρ ≤ τ if and only if there is a unique v ∈ C(ϕτ )
such that

ρ(a) = 〈ϕτ (a)vξτ , ξτ 〉,

and 0 ≤ v ≤ 1.

Theorem 6.10. Let τ ∈ S(a). Then

1. τ ∈ PS(A) if and only if (Hτ , ϕτ ) is irreducible.

2. If A is commutative, then τ ∈ PS(A) if and only if τ is a character on A (i.e a non-zero homomorphism A→ C).

Proof.

1. Suppose first that τ ∈ PS(A). By the previous lemma, if v ∈ C(ϕτ ) is such that 0 ≤ v ≤ 1 and we define

ρ(a) := 〈ϕτ (a)vξτ , ξτ 〉,

then ρ ≤ τ . Hence, there is t ∈ [0, 1] such that ρ = tτ . That is,

〈ϕτ (a)vξτ , ξτ 〉 = ρ(a) = tτ(a) = 〈tϕτ (a)ξτ , ξτ 〉

Then, for any a, b ∈ A

〈v(a+Nτ ), b+Nτ 〉 = 〈vϕτ (a)ξτ , ϕτ (b)ξτ 〉 = 〈tϕτ (b∗a)ξτ , ξτ 〉 = 〈t(a+Nτ ), b+Nτ 〉

Hence, v = t1 ∈ C1. By Theorem 3.2 it follows that C(ϕτ ) = C1, whence (Hτ , ϕτ ) is irreducible. Conversely,
assume that (Hτ , ϕτ ) is irreducible and that ρ ≤ τ . We want to show that there is t ∈ [0, 1] such that ρ = tτ .
By the previous lemma, there is v ∈ C(ϕτ ) = C1 such that 0 ≤ v ≤ 1 and ρ(a) = 〈ϕτ (a)vξτ , ξτ 〉. So v = α1 for
some α ∈ C and therefore ρ = ατ . But since 0 ≤ v ≤ 1 this means {α} = σ(v) ⊂ [0, 1].

2. Suppose A is commutative. If τ ∈ PS(A), then (Hτ , ϕτ ) is irreducible by part 1 and therefore C(ϕτ ) = C1.
Since A is commutative, it’s clear that ϕτ (A) ⊂ C(ϕ) and therefore for each a ∈ A there is α(a) ∈ C such that
ϕτ (a) = α(a)1. Thus, since 1 = ‖ξτ‖2 = 〈ξτ , ξτ 〉,

τ(ab) = 〈ϕτ (ab)ξτ , ξτ 〉
= 〈ϕτ (a)ϕτ (b)ξτ , ξτ 〉
= α(a)α(b)〈ξτ , ξτ 〉
= α(a)〈ξτ , ξτ 〉α(b)〈ξτ , ξτ 〉
= 〈ϕτ (a)ξτ , ξτ 〉〈ϕτ (b)ξτ , ξτ 〉 = τ(a)τ(b)

So τ is a character on A. Conversely, assume that τ is a character on A and that ρ is a positive linear functional
such that ρ ≤ τ . We want to show that there is t ∈ [0, 1] such that ρ = tτ . Notice first that ker(τ) ⊂ ker(ρ) for
if τ(a) = 0, then using Lemma 5.8 and that τ is a character

|ρ(a)|2 ≤ ‖ρ‖ρ(a∗a) ≤ ‖ρ‖τ(a∗a) = ‖ρ‖τ(a∗)τ(a) = 0

Now, since τ is non zero, there is a0 ∈ A with τ(a0) = 1; and clearly for any a ∈ A we have a− τ(a)a0 ∈ ker(τ).
Thus, a − τ(a)a0 ∈ ker(ρ), whence ρ(a) = ρ(a0)τ(a). It now suffices to show that ρ(a0) ∈ [0, 1]. Well,

0 ≤ ρ(a∗0a0) = ρ(a0)τ(a∗0a0) = ρ(a0) and ρ(a0) =
ρ(a∗0a0)
τ(a∗0a0) ≤ 1.

�

The next result shows that any cyclic representation actually comes from as state as in the GNS construction.

Theorem 6.11. Let (H, ϕ, ξ) be a cyclic representation of A with ‖ξ‖ = 1. Then, the function τ : A→ C given by

τ(a) := 〈ϕ(a)ξ, ξ〉

is a state of A and (H, ϕ) is equivalent to (Hτ , ϕτ ). Moreover, if (H, ϕ) is irreducible, then τ is pure.

Proof. If a ≥ 0, then τ(a) = ‖ϕ(a1/2)ξ‖2 ≥ 0, whence τ is a positive linear functional on A. Then, for (eλ), an
approcimate unit for A, we know ‖τ‖ = limλ τ(eλ) = limλ〈ϕ(eλ)ξ, ξ〉 = 〈ξ, ξ〉 = 1. Hence, τ ∈ S(a). The equivalence
part follows from the following fact

〈ϕτ (a)ξτ , ξτ 〉 = τ(a) = 〈ϕ(a)ξ, ξ〉,

together with Proposition 6.4. Finally, that τ ∈ PS(A) whenerver (H, τ) is irreducible follows at once from the previous
Theorem. �
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Example 6.12. For a Hilbert space H, the pure states of K(H) are given by the positive linear functionals

τξ(a) := 〈aξ, ξ〉

where ‖ξ‖ = 1. A consequence of this is that any non-zero irreducible representation of K(H) is equivalent to (ι,H)
where ι(a) = a ∈ L(H) for any a ∈ K(H). If we look at L(H), any τξ as above is also a pure state. However, if H is
infinite dimensional and separable, not all the pure states on L(H) are of the form τξ.

Definition 6.13. If K is a convex set, k ∈ K is an extreme point of K if whenever k = tk1 + (1− t)k2 for t ∈ (0, 1)
and k1, k2 ∈ K, then k = k1 = k2. We denote by Ext(K) to the set of extreme points of K.

Theorem 6.14. Let K(A) be the set of norm-decreasing positive linear functionals on A. Then K(A) is a weak-∗
compact set and it’s convex. Moreover, Ext(K(A)) = PS(A) ∪ {0}.

Proof. It’s clear that any converging net of positive linear functionals converges to a positive linear function. Thus,
K(A) is a weak-∗ closed subset of B1(0) in A∗. By Banach-Alaoglu it follows that K(A) is weak-∗ compact. Let
τ1, τ2 ∈ K(A) and t ∈ [0, 1]. Then, tτ1 + (1 − t)τ2 is also a norm-decresing positive linear functional, whence K(A)
is a convex set. Suppose that 0 = tτ1 + (1 − t)τ2 with t ∈ (0, 1) and τ1, τ2 ∈ K(A). For any a ∈ A≥0 we have
0 ≥ −tτ1(a) = (1 − t)τ2(a) ≥ 0; so τ1 = τ2 = 0 and therefore 0 ∈ Ext(K(A)). Now suppose that τ ∈ PS(A) is
such that τ = tτ1 + (1 − t)τ2 with t ∈ (0, 1) and τ1, τ2 ∈ K(A). Clearly 1 is an extreme point of [0, 1] and since
1 = ‖τ‖ = 1‖τ1‖ + (1 − t)‖τ2‖, we must have ‖τ1‖ = ‖τ2‖ = 1. Also, tτ1 ≤ τ and therefore there is t′ ∈ [0, 1] so that
tτ1 = t′τ because τ is pure. But, t = ‖tτ1‖ = ‖t′τ‖ = t′, whence τ = τ1 and from here it’s easy to see that τ = τ2,
which gives τ ∈ Ext(K(A)).

So far, we have shown PS(A)∪{0} ⊂ Ext(K(A)). For the reverse inclusion, take τ any non-zero element of Ext(K(A)).
We have to show that τ is a pure state. Since τ ∈ Ext(K(A)),

τ = ‖τ‖ · τ

‖τ‖
+ (1− ‖τ‖) · 0

and τ
‖τ‖ , 0 ∈ K(A), it follows that ‖τ‖ = 1; so τ is a state. Assume now that ρ ≤ τ but that ρ 6= τ and ρ 6= 0. Then,

‖ρ‖ ∈ (0, 1) and ‖τ − ρ‖ = limλ(τ − ρ)(eλ) = 1− ‖ρ‖. Therefore,

τ = ‖ρ‖ · ρ

‖ρ‖
+ (1− ‖ρ‖) · τ − ρ

‖τ − ρ‖

Since τ ∈ Ext(K(A)) and ρ
‖ρ‖ ,

τ−ρ
‖τ−ρ‖ ∈ K(A), it follows that ρ = ‖ρ‖τ , so τ ∈ PS(A). �

Remark 6.15. A fact that we won’t prove is that a representation on A is algebraically irreducible if and only if it is
topologically irreducible. An important consequence of this fact is that whenever τ is a pure state, then A/Nτ = Hτ
simply because A/Nτ is an invariant (not necessarily closed a priori) non-zero subspace of Hτ so irreducibility of
(Hτ , ϕτ ) (see Theorem 6.10) implies that A/Nτ = Hτ .

6.2 Modular and Primitive ideals

Definition 6.16. An ideal I in A is modular if there is u ∈ A such that a − au ∈ I and a − ua ∈ I for all a ∈ A.
Similarly, a left ideal J in A is modular if there is u ∈ A such that a− au ∈ J for all a ∈ A.

Lemma 6.17. If τ ∈ PS(A), the left ideal Nτ is modular.

Proof. From Remark 6.15 we know that there is u ∈ A such that ξτ = u + Nτ ∈ Hτ . Also, for any a ∈ A, we have
a+Nτ = ϕτ (a)ξτ = au+Nτ , whence a− au ∈ Nτ . �

Theorem 6.18. The correspondence τ 7→ Nτ is a bijection from PS(A) onto the set of all modular maximal left ideals
of A.

Definition 6.19. Given a closed modular maximal left modular ideal J in A, the ideal

I := {a ∈ A : aA ⊂ J}

is a largest ideal of A contained in J . We call I the primitive ideal of A associated with J . We denote by Prim(A)
to the set of all primitive ideals in A.

If τ ∈ PS(A), It’s easy to see that the primitive ideal associated with Nτ is ker(ϕτ ). This particular case can be seen
as a general characterization of primitive ideals:
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Proposition 6.20. An ideal I is in Prim(A) if and only if there is an irreducible representation (H, ϕ) of A such that
I = ker(ϕ).

Remark 6.21. A primitive ideal gives an irreducible representation. An irreducible representation has to come from
a pure state using the GNS construction. We already saw that any non-zero vector of an irreducible representation is
cyclic and that we can use norm one vectors define a state whose GNS representation is equivalent to the original one.
Then, for each primitive ideal I = ker(ϕ) we get a lot of pure states associated with (H, ϕ). Also it worth keeping in
mind that equivalent representation might have different kernels.

Definition 6.22. For S ⊂ A we let hull(S) := {I ∈ Prim(A) : S ⊂ I}. If ∅ 6= R ⊂ Prim(A), we put ker(R) =
⋂
I∈R I

and ker(∅) = A.

Theorem 6.23. If A is a proper modular ideal in A, then hull(I) 6= ∅. Moreover, if I is also closed, then

ker(hull(I)) = I

Remark 6.24. The previous theorem gives that any modular maximal ideal of A is primitive. If A is commutative
the converse is true, for Prim(A) is identified with it’s character space, which coincides with the modular maximal
ideals of A.

Definition 6.25. There is a unique topology on Prim(A) such that R ⊂ Prim(A) is closed if and only if hull(ker(R)) =
R. This is known as the hull-kernel topology.

Definition 6.26. If A is non-zero, we denote by Â to the set of unitary equivalence classes of non-zero irreducible
representations of A, that is

Â := {[H, ϕ] : (H, ϕ) is irreducible }

We topologize Â by considereing the weakest topology making the surjective map Â 3 [H, ϕ] 7→ ker(ϕ) ∈ Prim(A)
continuous.

Proposition 6.27. The canonical map Â 7→ Prim(A) is a homeomorphism if and only if any two non-zero irreducible
representations of A with the same kernel are unitarily equivalent.

6.3 Liminal and Postliminal C∗-algebras

Lemma 6.28. Let B be a C∗-subalegebra of L(H) such that B has no non-trivial invariant subspaces and B∩K(H) 6=
{0}. Then K(H) ⊂ B.

Definition 6.29. A is said to be liminal (also called a CCR C∗-algebra) if for every non-zero irreducible representation
(H, ϕ) of A we have ϕ(A) = K(H). It’s enough to ask ϕ(A) ⊂ K(H), because the inclusion K(H) ⊂ ϕ(A) will then
automatically hold by the above Lemma, being (H, ϕ) an irreducible representation.

Example 6.30. .

1. Any commutative C∗-algebra is liminal. Indeed, Let (H, ϕ) be a non-zero irreducible representation. Then
C(ϕ) = C1, but since A is commutative, ϕ(A) ⊂ C1. One checks that this implies that L(H1) = C1, so H is
one-dimensional and therefore ϕ(A) ⊂ L(H) = K(H).

2. Any finite dimensional C∗-algebra is liminal, for if (H, ϕ) is irreducible, then any non-zero ξ nH is cyclic and by
finite dimentionality ϕ(A)ξ = ϕ(A)ξ = H, whence H is finite dimensional. Thus, ϕ(A) ⊂ L(H) = K(H).

3. Recall from Example 6.12 that any non-zero irreducible representation of K(H) is equivalent to the inclusion
(ι,H). Thus, K(H) is liminal.

4. The algebra L(H) is not liminal when H is infinite dimensional; indeed B(H) 6= K(H), so the identity represen-
tation, which is irreducible because L(H)′ = C1, fails the requirement for liminality.

Theorem 6.31. If A is liminal, then its C∗-subalgebras and its quotient C∗-algebras are liminal also.

The converse to the above theorem is not true. One can check that if H is infinite dimensional, then K̃(H) can’t be
liminal (because the identity on H is an infinite dimensional irreducible representation and liminal algebras only have

finite dimensional irreducible representations). However, both K(H) and K̃(H)/K(H) = C1 are liminal.

Definition 6.32. A is said to be postliminal (most commonly called type I C∗-algebras) if for every non-zero
irreducible representation (H, ϕ) of A we have K(H) ⊂ ϕ(A). By a Lemma above, this is equivalent to ask ϕ(A) ∩
K(H) 6= {0}, being (H, ϕ) an irreducible representation.

Theorem 6.33. Let I be a closed ideal in A. Then, A is postliminal if and only if I and A/I are postliminal.
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Example 6.34. Any liminal C∗-algebra is also postliminal. T , the Toeplitz algebra which is the C∗-algebra generated
by the unilateral shift in L(`2), is postliminal but not liminal. To see this, we need to know that T can be represented

in the Hardy space H2 := {f ∈ L2(S1) : f̂(n) = 0, n < 0}. One checks that K(H2) is an ideal in T and that
T /K(H2) ∼= C(S1). Now apply the previous theorem.

Theorem 6.35. If (H1, ϕ1) and (H2, ϕ2) are two non-zero irreducible representations of a postliminal C∗-algebra A,

then [H1, ϕ1] = [H2, ϕ2] in Â if and only if ker(ϕ1) = ker(ϕ2).

Corollary 6.36. If A is a non-zero postliminal C∗-algebra, the canonical map Â→ Prim(A) is an isomorphism.

7 Direct Limits of C∗-algebras

7.1 Direct Limit of Groups

Let (Gi)i∈Λ be a directed family of groups (i.e. Λ is a directed set: a proset such that for every i, j ∈ Λ there is k ∈ Λ
with i ≤ k and j ≤ k). Suppose that for each i ≤ j in Λ there is a group homorphism ϕj,i : Gi → Gj such that

• ϕi,i := idGi

• ϕk,1 = ϕk,j ◦ ϕj,i for i ≤ j ≤ k.

The pair ((Gi)i∈Λ, (ϕj,i)i≤j) is called a directed system of groups. Given such a directed system of groups we will
now define its direct limit lim−→((Gi)i∈Λ, (ϕj,i)i≤j). First consider the set

G∞ :=
{

(gi)i∈Λ ∈
∏
i∈Λ

Gi : ∃ i0 ∈ Λ s.t. gj = ϕj,i0(gi0) ∀ j ≥ i0
}

It’s easily seen that G∞ is a subgroup of
∏
i∈ΛGi with pointwise multiplication. Consider the set

F :=
{

(gi)i∈Λ ∈
∏
i∈Λ

Gi : ∃ i0 ∈ Λ s.t. gj = 1Gj∀ j ≥ i0
}

Observe that F is a normal subgroup of G∞.

Definition 7.1. Put lim−→Gi := lim−→((Gi)i∈Λ, (ϕj,i)i≤j) := G∞/F . Write [(gi)i∈Λ]F for the image of (gi)i∈Λ in lim−→Gi.

For each j ∈ Λ we get a map ϕ∞,j : Gj → G∞/N defined by

ϕ∞,j(g) := [(gi)i∈Λ]F where gi :=

{
ϕi,j(g) if i ≥ j
1Gi otherwise

Lemma 7.2. The group lim−→Gi is such that

lim−→Gi =
⋃
i∈Λ

ϕ∞,i(Gi)

Proof. Take any x := [(gi)i∈Λ]F ∈ lim−→Gi, we have to show that x ∈ ϕ∞,i(Gi) for some i ∈ Λ. Well, since
(gi)i∈Λ ∈ G∞, there is i0 such that ϕj,i0(gi0) = gj for all j ≥ i0, whence x = ϕ∞,i0(gi0) ∈ ϕ∞,i0(Gi0). �

Furthermore, it’s clear that the group lim−→Gi together with the maps (ϕ∞,i)i make the following diagram commute

lim−→Gi

Gi Gj

ϕ∞,i

ϕj,i

ϕ∞,j

That is, ϕ∞,j ◦ ϕj,i = ϕ∞,i whenever i ≤ j. In fact, (lim−→Gi, ϕi,∞)i∈Λ is the categorical universal object making this
diagram commute:

Theorem 7.3. Let (Gi)i∈Λ, (ϕj,i)i≤j) be a directed system of groups. Suppose H is a group with group homomorphisms
ψi : Gi → H such that ψj ◦ ϕj,i = ψi whenever i ≤ j. Then, there is a unique group homomorphism Ψ : lim−→Gi → H
such that ψi = Ψ ◦ ϕ∞,i for all i ∈ Λ:

H

lim−→Gi

Gi

Ψ
ψi

ϕ∞,i
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Proof. For existence, using that lim−→Gi is the union of ϕ∞,i(Gi) by Lemma 7.2, we only need to check that the map
Ψ(ϕ∞,i(g)) := ψi(g) is well defined. Suppose that there are gi ∈ Gi and gj ∈ Gj such that ϕ∞,i(gi) = ϕ∞,j(gj) in
lim−→Gi. Then, there is k ∈ Λ with k ≥ i and k ≥ j such that ϕk,i(gi) = ϕk,j(gj), whence

ψi(gi) = (ψk ◦ ϕk,i)(gi) = (ψk ◦ ϕk,j)(gj) = ψj(gj).

For uniqueness assume Φ : lim−→Gi → H is another such map. Then, for any x ∈ lim−→Gi we know from Lemma 7.2 that
there is i ∈ Λ such that x = ϕ∞,i(g) for some g ∈ Gi, whence

Φ(x) = (Φ ◦ ϕ∞,i)(g) = ψi(g) = (Ψ ◦ ϕ∞,i)(g) = Ψ(x)

This finishes the proof. �

7.2 Direct Limit of C∗-algebras

The direct limit construction for C∗-algebras is very similar to the one for groups. The advantage is that we will not
need to kill things on the analogue of G∞ because C∗-algebras have an additive identity. The disadvantage is that the
C∗-seminorm we will put on the analogue of G∞ needs not to be a norm and needs not to be complete after killing
the null space of the seminorm. Thus, a completion process will be necessary.

Let ((Ai)i∈Λ, (ϕj,i)i≤j) be a directed system of C∗-algebras. Define

A∞ :=
{

(ai)i∈Λ ∈
∏
i∈Λ

Ai : ∃ i0 ∈ Λ s.t. aj = ϕj,i0(ai0) ∀ j ≥ i0
}

When equipped with pointwise operations, A∞ is a ∗-algebra. For each j ∈ Λ we have a map ϕ0
∞,j : Aj → A∞ given

by

ϕ0
∞,j(a) := (ai)i∈Λ where ai :=

{
ϕi,j(a) if i ≥ j
0 otherwise

We then get an analogue of Lemma 7.2

A∞ =
⋃
i∈Λ

ϕ0
∞,i(Ai)

This allows us to define a map α : A∞ → R+ as

α(ϕ0
∞,i(a)) := lim sup

j≥i
‖ϕj,i(a)‖ = lim

j≥i
sup
k≥j
‖ϕk,i(a)‖

Since ‖ϕk,i(a)‖ ≤ ‖a‖, α(ϕ0
∞,i(a)) is a finite number. We still have to check α is well defined. Indeed, if ϕ0

∞,i(ai) =

ϕ0
∞,j(aj) for some i, j ∈ Λ, then for any k ∈ Λ with k ≥ i and k ≥ j we must have ϕk,i(ai) = ϕk,j(aj). Notice that α

is a seminorm. Also, it’s easy to check that for any x, y ∈ A∞ we have

• α(xy) ≤ α(x)α(y)

• α(x∗) = α(x)

• α(x∗x) = α(x)∗

Thus α is infact a C∗-seminorm (it’s a C∗-norm whenerver all the maps ϕi,j are injective, whence isometric by Theorem
2.2). Thus, if N := α−1({0}), we have that α descends to a C∗-norm on A∞/N by letting

‖x+N‖α := α(x)

Definition 7.4. We define lim−→Ai := lim−→((Ai)i∈Λ, (ϕj,i)i≤j) to be the completion of A∞/N with respect to the C∗-
norm induced by α.

Notice that, by construction, A∞/N is a dense subalgebra of lim−→Ai. Furthermore, for each j ∈ Λ we get maps
ϕ∞,j : Aj → lim−→Ai by letting

ϕ∞,j(a) := ϕ0
∞,j(a) +N

Then,
⋃
i∈Λ ϕ∞,i(Ai) = A∞/N and therefore lim−→Ai =

⋃
i∈Λ ϕ∞,i(Ai). Moreover, a direct check shows that whenever

i ≤ j, then (ϕ∞,j ◦ ϕ0
j,i)(a)− ϕ0

∞,i(a) ∈ N for a ∈ Ai. Thus, we also get

lim−→Ai

Ai Aj

ϕ∞,i

ϕj,i

ϕ∞,j

As it was the case for groups, the pair (lim−→Ai, ϕ∞,i)i∈Λ is the universal object satisfying the above commutative
diagram.
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Theorem 7.5. Let ((Ai)i∈Λ, (ϕj,i)i≤j) be a directed system of C∗-algebras. Suppose B is a C∗-algebra with ∗-
homomorphisms ψi : Ai → B such that ψj ◦ ϕj,i = ψi whenever i ≤ j. Then, there is a unique ∗-homomorphism
Ψ : lim−→Ai → B such that ψi = Ψ ◦ ϕ∞,i for all i ∈ Λ:

B

lim−→Ai

Ai

Ψ
ψi

ϕ∞,i

Proof. Define Ψ0 :
⋃
i∈Λ ϕ∞,i(Ai)→ B by letting

Ψ0(ϕ∞,i(a)) := ψi(a)

We have to check Ψ0 is well defined, so assume ϕ∞,i(ai) = ϕ∞,j(aj) for some i, j ∈ Λ. Then, let ε > 0, since
ϕ0
∞,i(ai)− ϕ0

∞,j(aj) ∈ N , there is k such that k ≥ i and k ≥ j such that

‖ϕk,i(ai)− ϕk,j(aj)‖ < ε.

Then,
‖ψi(ai)− ψj(aj)‖ = ‖(ψk ◦ ϕk,i)(ai)− (ψk ◦ ϕk,j)(aj)‖ ≤ ‖ϕk,i(ai)− ϕk,j(aj)‖ < ε.

Letting ε→ 0 yields ψi(ai) = ψj(aj), so Ψ0 is well defined. Furthermore, for any j ≥ i

‖Ψ0(ϕ∞,i(a))‖ = ‖ψi(a)‖ = ‖ψj(ϕj,i(a))‖ ≤ ‖ϕj,i(a)‖

Hence, ‖Ψ0(ϕ∞,i(a))‖ ≤ ‖ϕ∞,i(a)‖. Since Ψ0 is linear, multiplicative and it preserves involution, we use density to
extend it to a well defined ∗-homomorphism Ψ : lim−→Ai → B. This proves existence. For uniqueness, notice that any
two such maps will agree on the dense subset

⋃
i∈Λ ϕ∞,i(Ai). �

Corollary 7.6. Let (Ai)i∈Λ be a directed family of C∗-subalgebras of A such that Ai ⊂ Aj whenever i ≤ j and such
that

⋃
i∈ΛAi is dense in A. Then, A ∼= lim−→(Ai, ιj,i), where ιj,i : Ai ↪→ Aj is the inclusion map.

Theorem 7.7. Let ((Ai)i∈Λ, (ϕj,i)i≤j) be a directed system of simple C∗-algebras. Then lim−→Ai is simple.

Proof. Consider the set S := {ϕ∞,i(Ai) : i ∈ Λ}. Then S is an upward directed of simple C∗-subalgebras of lim−→Ai
whose union is dense in lim−→Ai. Notice that to show that lim−→Ai is simple suffices to prove that if B is any C∗ algebra,
then any surjective ∗-homomorphism π : lim−→Ai → B is also injective. For any S ∈ S, simplicity of S gives that
π|S : S → B is either the zero map or injective and therefore isometric. However, since

⋃
S∈S S is dense in lim−→Ai, π

can’t be the zero map when restricted to any non zero S ∈ S, otherwise the restriction to any T with S ⊂ T will not
be injective. Then, π is isometric when restricted to

⋃
S∈S S and by density π is isometric on A, whence injective. �

Lemma 7.8. Let a ∈ Asa such that ‖a2 − a‖ < 1
4 . Then there is a projection p ∈ A such that ‖a− p‖ < 1

2 .

The previous lemma says that if a selfadjoint element is “almost idempotent”, then it’s close to a projection. This is
an important fact for K-theory but also to lift projections in the next important result.

Theorem 7.9. Let A := lim−→((Ai)i∈Λ, (ϕj,i)i≤j). Let ε > 0 and x ∈ A. Then, there is i ∈ Λ and ai ∈ Ai such that

‖x− ϕ∞,i(ai)‖ < ε

Moreover, if x is self-adjoint, positive, positive of norm less than one, or a projection, then ai may be chosen to be of
the same kind as x. If all the Ai’s are unital and the connecting maps ϕi,j are unital, then ai may be chosen to be
invertible of unitary if x is so.

7.3 UHF and AF Algebras

UHF and AF algebras are a special case of direct limits of C∗-algebras. Before defining them, we need a couple of
lemmas.

Lemma 7.10. Let p, q be projections in a unital C∗-algebra A such that ‖q − p‖ < 1. Then there is a unitary u ∈ A
such that q = upu∗ and ‖1− u‖ ≤

√
2‖q − p‖.

The previous lemma implies that “sufficiently close” projections are unitarily equivalent (see Definition K).
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Lemma 7.11. If A is a non-zero finite-dimensional C∗-algebra, then A is simple if and only if it’s of the form Mn(C)
for some n.

Proof. An algebraic argument shows that Mn(C) is simple. Now suppose A is simple and finite-dimensional. Let
(H, ϕ) be any non-zero irreducible representation of A. Since A is finite dimensional, A is liminal and therefore
ϕ(A) = K(H) and H is finite dimensional. Since A is simple, ker(ϕ) = {0}, whence ϕ : A → L(H) = K(H) is a
∗-isomorphism. �

Lemma 7.12. Mn(C) has a unique tracial state.

Proof. We already saw (Example 5.4) that a 7→ tr(a) is a tracial state. Suppose τ : A → C is another one. Notice
that any two rank-one projections p, q in Mn(C) are unitarily equivalent. Indeed, if p = vξ,ξ and q = vη,η for unit
vectors ξ, η ∈ Cn (where vξ,η(ζ) := 〈ζ, ξ〉η). Find a unitary u ∈Mn(C) such that u(ξ) = η. Then

q(ζ) = 〈ζ, η〉η = 〈ζ, u(ξ)〉u(ξ) = u(〈u∗(ζ), ξ〉ξ) = upu∗(ζ)

That is, q = upu∗. Then, τ(q) = τ(p) for all rank-one projections; say their common value is r. In particular, notice
that if ξ1, . . . , ξ1 is the canonical orthonormal basis for Cn, then

1 = τ(id) =

n∑
k=1

τ(vξk,ξk) = nr

Hence, for any rank-one projection p we must have τ(p) = 1
n = tr(p). Since the rank-one projections span Mn(C), we

have τ = tr. �

Remark 7.13. .

• The same argument as the one given in the previous lemma shows that if H is infinite dimensional, then K(H)
does not admit a tracial state. Indeed, if τ : K(H)→ C happened to be a tracial state and E is an orthonotmal
basis for H, then for each n take ξ1, . . . , ξn ∈ E and get

τ
( n∑
k=1

vξk,ξk

)
= nr,

where as before, r is the common value of the rank one-projections. But τ(
∑n
k=1 vξk,ξk) ≤ 1, because

∑n
k=1 vξk,ξk

is a projection. This gives, n ≤ 1
r for all n, a contradiction.

• L(H) does not have a tracial state for infinite dimensional H. To prove this one needs more machinery. L(H) is
a purely infinite algebra, which means there are isometries s1, s2 ∈ L(H) such that s∗1s2 = 0.

Definition 7.14. A uniformly hyperfinite algebra or UHF algebra is a unital C∗-algebra A which has an
increasing sequence (An)∞n=1 of finite dimensional simple C∗-subalgebras each containing the unit of A and whose
union is dense in A.

Proposition 7.15. If A is a UHF algebra, then it has a unique tracial state.

Proof. By Lemma 7.12, each An has a unique tracial state, call it τn. Since 1 ∈ An ⊂ An+1, the restriction τn+1|An
is also a tracial state on An (it’s clearly a trace and has normτn+1|An(1) = τn+1(1) = 1). Thus, by uniqueness of
the trace on An we must have τn+1|An = τn. This allows us to define τ :

⋃n
n=1An → C by letting τ(a) := τn(a) for

a ∈ An. Extending τ by density to all of A gives a tracial state on A. Uniqueness follows from uniqueness on each
An. �

For any m,n ∈ Z>0 we have a map ιm,n : Mn(C) → Mmn(C) sending a to ιm,n(a) = diag(a, . . . , a) (that is the
matrix who has m blocks of a down the mail diagonal and zeros elsewhere). Denote by S to the set of all functions
s : Z>0 → Z>0. A Cantor diagonal argument shows that S is uncountable. For each s ∈ S define s! ∈ S by
s!(n) := s(1) . . . s(n). For each s ∈ S and n ≤ m, we define ϕm,n : Ms!(n)(C)→Ms!(m)(C) by ϕm,n := ιs(n+1)···s(m),s!(n).
Then, put

Ms := lim−→(Ms!(n)(C), (ϕm,n)n≤m)

Since each Ms!(n)(C) is simple, Ms is a UHF algebra and therefore it has a unique tracial state. Let P be the set of
prime numbers. Define Es : P→ Z≥0 ∪ {∞} by

Es(r) := sup{m ∈ Z≥0 : rm | s!(n) for some n ∈ Z>0}

Theorem 7.16. Let s, s′ ∈ S and suppose that Ms and Ms′ are ∗-isomorphic. Then Es = Es′
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Proof. By symmetry suffices to show that Es ≤ Es′ , so it’s enough to show that for each n ∈ Z>0, there is m ∈ Z>0

such that s!(n) | s!(m). Well, let π : Ms → Ms′ be a ∗-isomorphism, let τ and τ ′ be their unique tracial sates. Also
let ϕ∞,n : Ms!(n)(C) → Ms and ψ∞,n : Ms′!(n)(C) → Ms′ be the direct limit maps. Since τ ′ ◦ π is a tracial state on
Ms, we have τ = τ ′ ◦ π. Now, let p be a rank-one projection on Ms!(n)(C) and since τ ◦ ϕ∞,n ought to be the only

tracial state of Ms!(n)(C), we must have τ(ϕ∞,n(p)) = 1
s!(n) . Since π(ϕ∞,n(p)) is a projection in Ms′ , by Theorem 7.9

there is m ∈ Z>0 and a projection q ∈Ms′!(m)(C) such that

‖π(ϕ∞,n(p))− ψ∞,m(q)‖ < 1

So, by Lemma 7.10, π(ϕ∞,n(p)) and ψ∞,m(q) are unitarily equivalent projections in Ms!(n)(C). Hence, τ ′(ψ∞,m(q)) =

τ ′(π(ϕ∞,n(p))) = τ(ϕ∞,n(p)) = 1
s!(n) . But, since τ ′ ◦ ψ∞,m is the unique tracial state on Ms′!(m)(S), we must have

τ ′(ψ∞,m(q)) = d
s′!(m) for some d ∈ Z>0. That is s′!(m) = ds!(n), as we needed to prove. �

Corollary 7.17. There uncountably many non isomorphic UHF algebras.

Proof. Enumerate the prime numbers P = {r1, r2, . . .}. For each s ∈ S define s(n) := r
s(n)
n . Then s ∈ S and

Es(rn) = s(n). Therefore s = s′ if and only if Es = Es′ . Thus, the previous Theorem implies that (Ms)s∈S is a family
of non isomorphic UHF algebras. The desired result follows because S is uncountable. �

We finish this section by presenting AF algebras.

Definition 7.18. An approximately finite algebra or AF algebra is C∗-algebra A which has an increasing
sequence (An)∞n=1 of finite dimensional C∗-subalgebras whose union is dense in A.

Of course A is an AF algebra if and only if it’s isomorphic to the direct limit of a sequence of finite dimensional
C∗-algebras. Any UHF algebra is an AF algebra. But there are AF algebras that are not UHF algebras. This is the
case of K(H) when H is an infinite dimensional. Indeed, K(H) is not a UHF algebra because we already saw it doesn’t
admit a tracial state. To see that K(H) is an AF algebra, take {ξ1, ξ2, . . .} an orthonormal basis for H and pn the
projection onto span(ξ, . . . , ξn). We already saw that (pn)∞n=1 is an approximate unit for K(H), so if An := pnK(H)pn
it follows that (An)∞n=1 is an incresing sequence of C∗-subalgebras and that

⋃∞
n=1An is dense in K(H). We only need

to show that An is finite dimensional. Well, notice that An is spanned by the rank one operators (vξj ,ξk)nj,k=1:

pnupn =

n∑
k,j=1

vξk,ξkuvξj ,ξj =

n∑
k,j=1

〈u(ξj), ξk〉vξj ,ξk

so each An has dimension at most n2.

Theorem 7.19. If I is a closed ideal in an AF -algebra A, then I and A/I are AF algebras.

8 Tensor Products of C∗-alegebras.

We briefly recall the tensor product of Hilbert spaces. Let Hi1,H2 be two Hilbert spaces. Denote by H1 �H2 to the
algebraic tensor product. Then, there is a unique inner product on H1 �H2 such that

〈ξ1 ⊗ ξ2, η1 ⊗ η2〉 = 〈ξ1, η1〉〈ξ2, η2〉

The Hilbert space H1 ⊗H2 is the completion of H1 �H2 under the above inner product.

Lemma 8.1. Let H1,H2,G1,G2 be Hilbert Spaces, a ∈ L(H1,H2) and b ∈ L(G1,G2). Then, there exists a unique
element of L(H1 ⊗ G1,H2 ⊗ G2) which extends a⊗ b : H1 � G1 → H2 � G2 (recall that a⊗ b is the unique linear map
for which (a⊗ b)(ξ1 ⊗ η1) = a(ξ1)⊗ b(η1).) This map is also called a⊗ b and we have ‖a⊗ b‖ = ‖a‖‖b‖.

With suitable domains, (a1 ⊗ b1)(a2 ⊗ b2) = (a1a2)⊗ (b1b2) and (a⊗ b)∗ = a∗ ⊗ b∗. To prove the second assertion, we
need to use dense subspaces and elementary tensors.

Let now A and B be C∗-algebras. Their algebraic tensor product A�B is easily seen to be an algebra with the unique
multiplication given by

(a1 ⊗ b1)(a2 ⊗ b2) = (a1a2)⊗ (b1b2)

for ak ∈ A, bk ∈ B. Further, we can make A�B into a ∗-algebra with the well defined involution

(a⊗ b)∗ = a∗ ⊗ b∗

Further, if A′ and B′ are also C∗-algebras and ϕ : A → A′, ψ : B → B′ are ∗-homomorphisms, there is a unique
∗-algebra homomorphism ϕ⊗ ψ : A�A′ → B �B′ such that

(ϕ⊗ ψ)(a⊗ b) = ϕ(a)⊗ ψ(b)
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Theorem 8.2. Suppose (H1, ϕ) and (H2, ψ) are representations of A and B respectively. Then, there is a unique
∗-homomorphism π : A�B → L(H1 ⊗H2) such that

π(a⊗ b) = ϕ(a)⊗ ψ(b),

where ϕ(a)⊗ ψ(b) ∈ L(H1 ⊗H2) is the map from Lemma 8.1. Moreover, if both ϕ and ψ are injective, then so is π.
We usually denote π = ϕ⊗ ψ.

8.1 Spatial Norm

Definition 8.3. Let A and B be C∗-algebras with universal representations given by (H1, ϕ) and (H2, ψ) respectively.
Then, we use the map π = ϕ⊗ ψ from the previous theorem to define the spatial norm on A�B by letting

‖c‖∗ := ‖π(c)‖

for any c ∈ A�B. Clearly ‖ · ‖∗ is a C∗-norm on A�B, the completion of A�B with respect to this norm is called
the spatial tensor product of A and B and we denote it by A⊗∗ B.

Remark 8.4. Let A and B be C∗-algebras with universal representations given by (H1, ϕ) and (H2, ψ) respectively.

• ‖a⊗ b‖∗ = ‖(ϕ⊗ ψ)(a⊗ b)‖ = ‖ϕ(a)⊗ ψ(b)‖ = ‖ϕ(a)‖‖ψ(b)‖ = ‖a‖‖b‖.

• There might be more than one C∗-norm on A�B. If γ is any C∗-norm on A⊗B, we denote its C∗-completion
with respect to γ by A⊗γ B.

• Recall that the universal representation comes from states, one checks that

‖c‖∗ = sup
τ∈S(A),ρ∈S(B)

‖(ϕτ ⊗ ϕρ)(c)‖

for any c ∈ A�B.

Theorem 8.5. Let A and B be non-zero C∗-algebras and suppose that γ is a C∗-norm on A�B. Let (Hπ) be a non-
degenerate representation of A⊗γ B. Then, there exist unique ∗-homomorphisms πA : A→ L(H) and πB : B → L(H)
such that

π(a⊗ b) = πA(a)πB(b) = πB(b)πA(a)

for all a ∈ A, b ∈ B. Moreover, the representations (πA,H) and (πB ,H) are non-degenerate.

Sketch of Proof. Let (uα)α∈I and (vβ)β∈J be approximate identities for A and B respectively and define

πA(a)ξ := lim
β
π(a⊗ vβ)ξ πB(b)ξ := lim

α
π(uα ⊗ b)ξ

for ξ ∈ (A�B)H. One checks both πA and πB are well defined. Since π is non-degenerate, we extend to all H and get
∗-homomorphisms πA : A → L(H) and πB : B → L(H). Non-degeneracy of π implies that both πA and πB are non
degenerate. The commuting assertion follows because both π(a ⊗ vβ)π(uα ⊗ b) and π(uα ⊗ b)π(a ⊗ vβ) are strongly
convergent to π(a⊗ b). Finally, uniqueness follows because π(a⊗ vβ) is strongly convergent to any other such πA and
π(uα ⊗ b) to any other such πB . “�”

Corollary 8.6. Let A and B be non-zero C∗-algebras and suppose that γ is a C∗-seminorm on A � B. Then
γ(a⊗ b) ≤ ‖a‖‖b‖.
Proof. Consider the C∗-norm δ := max{γ, ‖ · ‖∗}. Then, let (π,H) be the universal representation of the C∗-
algebra A ⊗δ B, which is injective by Theorem 5.15 and non-degenerate because its cyclic. We get non-degenerate
representations πA and πB from the previous theorem. Finally,

γ(a⊗ b) ≤ δ(a⊗ b) = ‖π(a⊗ b)‖ = ‖πA(a)⊗ πB(b)‖ = ‖πA(a)‖‖πB(b)‖ ≤ ‖a‖‖b‖

as wanted. �

8.2 Maximal Norm

Let A and B be C∗-algebras and denote by Γ the set of all C∗-norms γ on A�B. We define

‖c‖max := sup
γ∈Γ

γ(c)

for each c ∈ A�B. As a consequence of the previous corollary, ‖c‖max <∞ and therefore we get a C∗-norm on A�B.
We call A ⊗m B the maximal tensor product of A and B. The maximal tensor product has a useful universal
property

Theorem 8.7. Let A,B and C be C∗-algebras. Suppose ϕ : A → C and ψ : B → C are ∗-homomorphisms such
that ϕ(a)ψ(b) = ψ(b)ϕ(a) for all a ∈ A, b ∈ B. Then, there is a unique ∗-homomorphism π : A ⊗m B → C such that
π(a⊗ b) = ϕ(a)ψ(b).
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8.3 Nuclear C∗-Algebras

Definition 8.8. A C∗-algebra A is said to be nuclear if for any C∗-algebra B, there is only one C∗-norm on A�B.

Lemma 8.9. If a ∗-algebra admits a complete C∗-norm, then it is the only C∗-norm on A.

Proof. Let ‖ · ‖ be a complete C∗-norm on A. Assume γ is a (potentially not compete) C∗-norm on A. Let Aγ be the
completion of A with respect to γ. The inclusion ϕ : A → Aγ is clearly an inyective ∗-homomorphism and therefore
isometric by Theorem 2.2. Hence, γ(a) = ‖a‖ for all a ∈ A. �

Example 8.10. .

1. The C∗-algebra Mn(C) is nuclear. Indeed, if A is any other C∗-algebra, we have Mn(C) ⊗ A ∼= Mn(A) via
the map ej,k ⊗ a 7→ (δj,ka)l,m. Since Mn(A) admits a complete C∗-norm (represent A on H and see Mn(A) in
L(Hn)), nuclearity follows from the previous lemma.

2. In fact any finite-dimensional algebra is nuclear. A finite dimensional algebra looks like A = Mn1
(C) ⊕ · · · ⊕

Mnk(C). Let B be any C∗-algebra. Then A⊗B ∼= Mn1
(B)⊕ · · · ⊕Mnk(B) admits only one C∗-norm.

3. Direct limit of nuclear C∗-algebras is nuclear. Indeed, if B is any C∗-algebra then
⋃
i∈Λ(ϕ∞,i(Ai)�B) is dense

in (lim−→Ai) ⊗γ B for any C∗-norm γ on (lim−→Ai) � B. Nuclearity will follow because the restriction of γ to
ϕ∞,i(Ai)�B is unique as each ϕ∞,i(Ai) is nuclear.

4. If H is an infinite dimensional Hilbert space, then K(H) is nuclear. This follows from 1 and 3 above.

5. Any commutative C∗-algebra is nuclear. This needs a lot more of work. In particular one gets this in the road
to show that the spacial norm is the least C∗-norm on the tensor product of two C∗-algebras.

6. Suppose that 0 I A B 0
ϕ ψ

with I and B nuclear. Then A is nuclear.

9 Projections and K0

Definition 9.1. Two projections p, q ∈ A are orthogonal when pq = 0. In such case the sum p+q is also a projection
which we will denote by p⊕ q.

Remark 9.2. Let p ∈ A be a projection and consider 1− p ∈ Ã. Then, 1− p is a projection which is orthogonal to p:

p(1− p) = (p, 0)(−p, 1) = (−p+ p, 0) = 0

More generally, if p, q are projections and p ≤ q, then q − p is a projection orthogonal to p. Indeed, if we represent
A on L(H), p ≤ q implies that p(H) ⊂ q(H) and from this it follows that qp = pq = p, whence (q − p)2 = q − p and
p(q − p) = 0.

Lemma 9.3. Let v be a partial isometry (that is v∗v is a projection). We call the projection p := v∗v the support
projection. Then, q := vv∗ is also projection, called range projection. Moreover,

v = vv∗v = vp = qv = qvp and v∗ = v∗vv∗ = v∗q = pv∗ = pv∗q

Proof. First we show that v = vv∗v. Indeed, let z := v − vv∗v. Then,

z∗z = (v − vv∗v)∗(v − vv∗v) = (v∗ − v∗vv∗)(v − vv∗v) = p− p2 − p2 + p3 = p− p− p+ p = 0

Thus ‖z‖2 = ‖z∗z‖ = 0, whence z = 0. That is, v = vv∗v and the first chain of equialities follows. This also proves
that q is a projection:

q2 = vv∗vv∗ = (vv∗v)v∗ = vv∗ = q

The second chain of equalities comes from taking involution on the first chain. �

Remark 9.4. The previous lemma, although an easy result, is extremely important and used all the time. A particular
consequence is that when v is a partial isometty on L(H), then v∗(H) and v(H) are isometrically isomorphic via v.

Definition 9.5. Projections p, q in A are said to be

• Murray-von Neumann equivalent (or simply equivalent), denoted p ∼ q, if there is a partial isometry
v ∈ A such that p = v∗v and q = vv∗.

• unitarily equivalent, denoted p ∼u q, if there is a unitary u ∈ Ã such that p = u∗qu.
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• homotopic, denoted p ∼h q, if p and q are connected by a norm continuous path of projections.

Lemma 9.6. If p1, p2, q1 and q2 are projections in A such that p1 ∼ q1, p2 ∼ q2, p1 ⊥ p2 and q1 ⊥ q2, then
p1 ⊕ p2 ∼ q1 ⊕ q2.

Proof. We have partial isometries v1 and v2 with p1 = v∗1v1, q1 = v1v
∗
1 , p2 = v∗2v2 and q2 = v2v

∗
2 . Orthogonality and

Lemma 9.3 imply that v∗j vk = 0 = vjv
∗
k for j 6= k. Thus, if v = v1+v2, it follows that p1⊕p2 = v∗v ∼ vv∗ = q1⊕q2. �

Proposition 9.7. Let p and q be projections in A. Then

1. p ∼h q =⇒ p ∼u q =⇒ p ∼ q.

2. p ∼ q =⇒ diag(p, 0) ∼u diag(q, 0) in M2(A).

3. p ∼u q =⇒ diag(p, 0) ∼h diag(q, 0) in M2(A).

Proof.

1. That p ∼h q =⇒ p ∼u q requires some technical work and we omit it. If p ∼u q, there is a unitary u ∈ Ã such
that p = u∗qu. Let v = qu and notice that v∗v = u∗qu = v and vv∗ = q, whence p ∼ q.

2. Suppose p ∼ q. We have a partial isometry v with p = v∗v and q = vv∗. Let u =

(
v∗ 1− p

1− q v

)
∈ M2(Ã).

Then, using Lemma 9.3

u∗u =

(
v 1− q

1− p v∗

)(
v∗ 1− p

1− q v

)
=

(
1 0
0 1

)
Similarly uu∗ =

(
1 0
0 1

)
, so u is a unitary in M2(Ã). We compute

u∗diag(p, 0)u =

(
v 1− q

1− p v∗

)(
p 0
0 0

)(
v∗ 1− p

1− q v

)
=

(
vp 0
0 0

)(
v∗ 1− p

1− q v

)(
q 0
0 0

)
,

so indeed diag(p, 0) ∼u diag(q, 0) in M2(A).

3. Now assume that p ∼u q. We have a unitary u ∈ Ã such that q = upu∗. We omit the proof that w0 :=
diag(u, u∗) ∼h 1M2 =: w1 via a continuous path of unitaries (wt)t∈[0,1] in M2(Ã). Then, each pt := wtdiag(p, 0)w∗t
is a projection in M2(A) with p0 = diag(q, 0) and p1 = diag(p, 0). �

9.1 The monoid V (A)

Definition 9.8. Define M∞(A) :=
⋃∞
n=1Mn(A). Two projections p, q in M∞(A) are equivalent, dented p ∼ q, if

there is v ∈ M∞(A) with p = v∗v and q = vv∗. The equivalence class of a projection p ∈ M∞(A) is denoted by [p].
We define

V (A) := {[p] : p2 = p∗ = p ∈M∞(A)}
Addition in V (A) is defined by

[p] + [q] = [diag(p, q)] = [p′ ⊕ q′]
where p′ ∼ p, q′ ∼ q and p′ ⊥ q′.

Remark 9.9. Addition in V (A) is well defined and by Proposition 9.7, all notions of equivalence of projections agree
on M∞(A).

Proposition 9.10. V (A) is an Abelian semigroup with additive identity [0]. If ϕ : A → B is a ∗-homomoprhism,
then the induced map ϕ∗ : V (A)→ V (B) given by

ϕ∗([(ai,j)]) = [(ϕ(ai,j))]

is a well defined homomorphism of semigroups. The correspondence A 7→ V (A) together with ϕ 7→ ϕ∗ is a covariant
functor from the category of C∗-algebras to the one of abelian semigroups.

Proof. That V (A) is an Abelian semigroup with additive identity [0] is easy. Let p = (ai,j) be a projection in M∞(A).
Then, ϕ(p) := (ϕ(ai,j)) ∈M∞(B) is a projection because ϕ(p)2 = ϕ(p2) = ϕ(p) = ϕ(p∗) = ϕ(p)∗. Now suppose p ∼ p′
in M∞(A), so there is v ∈ M∞(A) so that p = v ∗ v and p′ = vv∗. Then ϕ(v) implements the equivalence between
ϕ(p) and ϕ(p′). This gives that ϕ∗ is well defined. Since

ϕ∗([p] + [q]) = ϕ∗(diag(p, q)) = diag(ϕ(p), ϕ(q)) = [diag(ϕ(p), 0)] + [diag(0, ϕ(p))] = ϕ∗([p]) + ϕ∗([q]),

it follows that ϕ∗ is a homomorphism. Finally, if we consider idA : A → A, it’s clear that (idA)∗ = idV (A) and if
ψ : B → C, clearly (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗. �
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Example 9.11. Let H be separable infinite dimensional Hilbert space. We compute V (C), V (Mn(C)), V (K(H)),
V (L(H)) and V (Q(H)), where Q(H) := L(H)/K(H) is the Calkin algebra.

1. To compute V (C) we need to look at projections in M∞(C). Let p ∼ q be equivalent projections. Choose
n ∈ Z>0 and p′, q′ ∈ Mn(C) so that p′ ∼ p and q′ ∼ q. There is v ∈ Mn(C) such that p′ = v∗v and q′ = v∗v.
Then, we know from Remark 9.4 that v∗(Cn) and v(Cn) are isometrically isomorphic subspaces of Cn. Further,
notice that p′(Cn) = v∗(Cn): Indeed p′ξ = v∗vξ ∈ v∗(Cn) and v∗η = (vp′)∗η = p′v∗η ∈ p′(Cn). Similarly,
q′(Cn) = v(Cn) and therefore rank(p′) = rank(q′). We have just shown that equivalent projections in M∞(C)
have equal rank. The converse is true. Take any two projections in M∞(C) with equal rank, say k ∈ Z≥0. Since
p ∼ diag(p, 0) and the rank is not affected, with no loss of generality we may assume p, q ∈ Mn(C) for some
n ∈ Z>0. Let ξ1, . . . , ξk be an orthonormal basis for p(Cn) and η1, . . . , ηk an orthonormal basis for q(Cn). Define
v : Cn → Cn by letting v(ξj) := ηj on p(Cn) and v = 0 on (1 − p)(Cn). It’s clear that v is a linear map, so
v ∈Mn(C) and that v∗ : Cn → Cn is such that v∗(ηj) = ξj . Now for any ξ ∈ Cn we have

pξ =

k∑
j=1

ajξj =

k∑
j=1

ajv
∗(ηj) =

k∑
j=1

ajv
∗v(ξj) = v∗v(pξ)

This proves p = v∗v and similarly we get q = vv∗, whence p ∼ q. Putting all together we conclude that

V (C) ∼= Z≥0

via [p] 7→ rank(p).

2. Since Mm(Mn(C)) ∼= Mmn(C), it follows as in the case of C that V (Mn(C)) ∼= Z≥0.

3. For K(H), notice that Mn(K(H)) = K(Hn) ∼= K(H). We claim that a projection in L(H) is in K(H) if and only
if it has finite rank. The if part is clear. For the only if, assume p ∈ K(H) is a projection. Since p is idempotent,
we have p(H) = ker(1 − p), but since p is compact, it follows that 1 − p is Fredholm and therefore has finite
dimensional kernel. The claim is proved. Thus, we also have that two preojections in M∞(K(H)) are equivalent
if and only if they have the same rank, and only finite ranks are possible. This gives V (K(H)) = Z≥0.

4. For L(H) we also have Mn(L(H)) = L(Hn) ∼= L(H). Using orthonormal basis, the argument used for finite
dimensions shows that projections in M∞(L(H)) are equivalent if and only if they have equal rank. However,
we noe have projections with infinite rank, like the identity. In fact any infinite rank projection is equivalent to
the identity. Thus, V (L(H)) = Z≥0 ∪ {∞}.

5. For Q(H), we have again Mn(Q(H)) ∼= Q(H). Thus, it suffices to look at equivalence classes of projections in
Q(H). Clearly any two finite rank projections in L(H), descend to 0 in Q(H). Turns out that any non-zero
projection in Q(H) comes from an infinite rank projection in L(H) (sketch: if u+K is a non-zero projection, u
can be chosen to be self adjoint and therefore u − u2 is compact, now use the spectral theorem decomposition
to “perturb” u and get the desired projection). Finally, any two non-zero projections in Q(H) are equivalent, as
they come from equivalent projections in L(H). This proves that there are only two classes of projections in the
Calkin algebra, the zero projection and the non-zero ones, that is V (Q(H)) ∼= {0,∞}.

9.2 The group K0(A)

Suppose (V,+) is a commutative semigroup with identity 0+. For (a, b), (c, d) ∈ V × V we identify (a, b) ∼ (c, d) if
there is e ∈ V such that a+ d+ e = c+ b+ e. This is an equivalence relation and we write [(a, b)] := a− b and denote
the set of equivalence classes by G(V ) := {a− b : a, b ∈ V }. We endow G(V ) with an binary operation

(a− b) + (c− d) := (a+ c)− (b− d)

It’s easily seen that this operation is well defined and makes G(V ) into an Abelian group with identity 0 := 0V −0V =
a− a and inverse −(a− b) = b− a. This is called the Groethendieck group (this construction works even when only
have a commutative semigroup). We get a map ιV := V 7→ G(V ) given by ιV (a) = a − 0V (actually this could be
defined using any b ∈ V in place of 0V : ιV (a) = (a+b)−b). The pair (G, ιV ) is universal in the sense that any additive
map from V to another Abelian group H factors through ιV . We make this more precise in the following theorem:

Theorem 9.12. Let (V,+) is a commutative semigroup with identity 0V , G(V ) its Grothendieck semigroup and
ιV : V → G(V ) the canonical map. Then

1. (Universal Property) If (H,+) is an Abelian group and ϕ : V → H an additive map, then there is a unique group
homomorphism ψ : G(V )→ H such that ψ ◦ ϕ = ιV

V H

G(V )

ιV

ϕ

ψ

23



2. (Functoriality) If V,W are semigroups and ϕ;V →W an additive map, then there is a unique group homomor-
phism G(ϕ) : G(V )→ G(W ) such that

V W

G(V ) G(W )

ιV

ϕ

ιW

G(ϕ)

commutes.

3. G(V ) := {ιV (a)− ιV (b) : a, b ∈ V }.

4. a, b ∈ V , then ιV (a) = ιV (b) if and only if there is e ∈ V such that a+ e = b+ e.

5. ιV is injective if anf only if V has the cancellation property.

Definition 9.13. For any C∗-algebra A we put K00(A) := G(V (A)). We have the canonical map ιA := ιV (A) :
V (A)→ K00(A) given by ιA([p]) = [p]− [0].

Example 9.14. We already know that V (C) = Z≥0. It’s now a standard exercise to verify that K00(C) = Z.

Example 9.15. K00 is not that interesting when A is not unital. Recall that the projections of C0(X) are the indicator
functions of subsets of X which are both compact and open. Then, V (C0(R2)) = {0} and therefore K00(C0(R2)) = {0}.
However, if we adjoint a unit, we get C(S2), adding only one new projections, the identtity function, never the less
we get more non-trivial projections in M2(C(S2)). One actually gets K00(C(S2)) = Z⊕ Z.

For a ∗-homomorphism ϕ : A → B, we already got an additive map ϕ∗ : V (A) → V (A). We denote again by ϕ∗ to
the map G(ϕ∗) : K00(A)→ K00(B) gotten from functoriality of the Grothendieck group.

Recall that A+ means Ã when A is not unital and A ⊕ C when A is uinital. In any case we always have an exact
sequence

0 A A+ C 0π

This gives a group homomorphism π∗ : K00(A+)→ Z. We use the K00 group of A+ to define the K0 group of A.

Definition 9.16. For any C∗-algebra A we define K0(A) := ker(π∗) ⊂ K00(A+).

We still have a canonical map from V (A) to K0(A) that we denote again by ιA : V (A) → K0(A) and it’s given also
by ιA([p]) := [p]− [0]. We have to be careful here. A priori, [p]− [0] ∈ K00(A+); we have to check that it is actually
in K0(A). Indeed, since p is a projection in A and ker(π) = A, we have

π∗([p]− [0]) = [π(p)]− [π(0)] = 0

Theorem 9.17. For a ∗-homomorphism ϕ : A→ B, there is a well defined group homomorphism ϕ∗ : K0(A)→ K0(B)
given by

ϕ∗([(ai,j)]− [(bi,j)]) := [(ϕ+(ai,j))]− [(ϕ+(bi,j))],

where (ai,j), (bi,j) ∈M∞(A+) are projections. This makes K0 is a covariant functor from the category of C∗-algebras
to the one of Abelian groups.

Proof. The only non-obvious part is that [(ϕ+(ai,j))] − [(ϕ+(bi,j))] is actually an element of K0(B). Well, since
[(ai,j)] − [(bi,j)] ∈ K0(A), this means that [π(aij)] − [π(bi,j)] = 0 ∈ Z. Since V (C) has cancellation, the can-
nonical map is injective and thereofore π(ai,j) = π(bi,j). which implies that the matrices (ai,j) and (bi,j) have
the same scalar part. Hence, the matrices (ϕ+(ai,j)) and (ϕ+(bi,j)) also have the same scalar part and therefore
π∗
(
[(ϕ+(ai,j))]− [(ϕ+(bi,j))]

)
= 0. �

The following result is important and as an immediate consequence one gets that K0(A) = K00(A) when A is unital.

Proposition 9.18. Let A1, A2 be C∗-algebras and put A := A1 ⊕ A2. For k = 1, 2, let πk : A → Ak be the
projection onto Ak. The induced map (πk)∗ has three different interpretations (either on V (A), on K00(A) or K0(A)).
Then, the maps (π1)∗ ⊕ (π2)∗ are isomorphisms between V (A) → V (A1) ⊕ V (A2), K00(A) → K00(A1) ⊕ K00(A2),
K0(A)→ K0(A1)⊕K0(A2).

Proof. If p1 ∈M∞(A1) and p2 ∈M∞(A2) are projections, we have

(π1)∗ ⊕ (π2)∗([(p1, p2)]) =
(
(π1)∗([(p1, p2)]), (π2)∗([(p1, p2)])

)
=
(
[π1(p1, p2)], [π2(p1, p2) = (p1, p2)]

)
= ([p1], [p2])

The result now easily follows. �
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Corollary 9.19. For every C∗-algebra A, whether unital or not, the split exact sequence

0 A A+ C 0π

σ

induces a split exact sequence

0 K0(A) K00(A+) Z 0
π∗

σ∗

Thus, K00(A+) = K0(A)⊕ Z. In particuar, K00(A) ∼= K0(A) when A is unital.

Proof. Exactness at K0(A) is because K0(A) is a subgroup of K00(A+). By definition K0(A) = ker(π∗), so this gives
exactness at the middle. Exactness at Z and splitness come from functoriality. Thus, K00(A+) = K0(A) ⊕ Z. If A
is unital, then A+ = A ⊕ C, so the previous Proposition gives K00(A+) = K00(A) ⊕ Z; from where we extract that
K00(A) ∼= K0(A). �

Example 9.20. Let H be separable infinite dimensional Hilbert space. We compute K0(C), K0(Mn(C)), K00(K(H)),
K0(L(H)) and K0(Q(H)), where Q(H) := L(H)/K(H) is the Calkin algebra.

1. C is unital and therefore K0(C) = K00(C) = Z.

2. Mn(C) is unital and therefore K0(Mn(C)) = K00(Mn(C)) = Z.

3. K(H) is not unital, at this point we can only say that K00(K(H)) = Z. We will use stability to show that
K(K(H)) = Z.

4. L(H) is unital so K0(L(H)) = K00(L(H)) = G(V (L(H))) = G(Z≥0 ∪ {∞}). In the semigroup Z≥0 ∪ {∞} we
have ∞ +∞ = ∞ and n +∞ = ∞ for any n ∈ ≥ 0. Thus, a − b = c − d for any a, b, c, d ∈ Z≥0 ∪ {∞}. This
gives G(Z≥0 ∪ {∞}) = {0}.

5. Q(H) is unital so K0(Q(H)) = K00(Q(H)) = G(V (Q(H))) = G({0,∞}). Again we have G({0,∞}) = {0}.

Theorem 9.21. (A picture of K0(A))

1. K0(A) is an Abelian group.

2. Any element in K0(A) can be seen as a formal difference [p]− [q] where p, q are projections in Mk(A+) for some
k ∈ Z> 0 and p − q ∈ Mk(A) (that is p and q have the same scalar part). If A is unital, then p and q may be
chosen to be in Mk(A).

3. Actually, each element of K0(A) can be written as [p]− [pn] where p is a projection in Mk(A+) for some k ∈ Z>0,
pn := diag(1, . . . , 1︸ ︷︷ ︸

n

, 0, . . . , 0) ∈Mk(A+) with n ≤ k, and p− pn ∈Mk(A).

Proposition 9.22. Let ((Ai)i∈Λ, (ϕj,i)i≤j) be a directed system of C∗-algebras. Then ((K0(Ai))i∈Λ, ((ϕj,i)∗)i≤j) is a
directed system of groups and

K0(lim−→Ai) ∼= lim−→K0(Ai)

Sketch of Proof. For i ≤ j in Λ we get ψj,i := (ϕj,i)∗ : V (Ai)→ V (Aj). It’s easy to check that ((V (Ai))i∈Λ, (ψj,i)i≤j)
is a directed system of semigroups. Just as we did for groups, we can construct the direct limit of a direct system
of semigroups. We get a semigroup lim−→V (Ai) together with the canonical maps ψ∞,i : V (Ai) → lim−→V (Ai). The
semigroup V (lim−→(Ai)) together with the maps (ϕ∞,i)∗ : V (Ai) → V (lim−→Ai) are such that (ϕ∞,i)∗ = (ϕ∞,j)∗ ◦ ψj,i
when i ≤ j. Then, there is a unique additive map Ψ : lim−→V (Ai)→ V (lim−→(Ai)) such that

V (lim−→(Ai))

lim−→V (Ai)

V (Ai)

Ψ
(ϕ∞,i)∗

ψ∞,i

Now use the lifting results from Theorem 7.9 to show that lim−→V (Ai) ∼= V (lim−→(Ai)) via Ψ. This clearly implies
lim−→K0(Ai) ∼= K0(lim−→(Ai)). “�”
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Lemma 9.23. For n ∈ Z>0, consider the embedding ϕn,1 : A ↪→ Mn(A) given by ϕn,1(a) := diag(a,0). Then,
(ϕn,1)∗ : K0(A)→ K0(Mn(A)) is an isomorphism.

Proof. It suffices to show that (ϕn,1)∗ : V (A)→ V (Mn(A)) is an isomorphism. To do so we need to play in Mk(A) for
different sizes. First, it’s clear that (ϕn,1)∗ is additive. If p, q ∈ M∞(A) are projections such that ϕn,1(p) ∼ ϕn,1(q),
then p ∼ q, so (ϕn,1)∗ is injective. If p ∈ M∞(Mn(A)) is a projection, then p ∈ Mnk(A) for some k, so p ∈ M∞(A)
and clearly ϕn,1(p) ∼ p, whence (ϕn,1)∗ is surjective. �

Corollary 9.24. Let H be an infinite dimensional speparable Hilbert space and put K := K(H). Let v1,1 be a rank
one projection in K. The morphisim a 7→ a⊗ v1,1 from A→ A⊗K induces an isomorphism K0(A) ∼= K0(A⊗K).

Proof. For m ≤ n, let ϕn,m : Mm(A) ↪→Mn(A) be given by ϕn,m(a) := diag(a,0). We saw that K is an AF algebra
and that it’s actually given by K = lim−→Mn(C). Since Mn(A) = A⊗Mn(C), we have

A⊗K = lim−→Mn(A)

Thus, by continuity of K0, we have lim−→K0(Mn(A)) ∼= K0(A⊗K). By the previous Lemma, for m ≤ n, the following
diagram is commutative

K0(A)

K0(Mm(A)) K0(Mn(A))

(ϕm,1)−1
∗

(ϕn,m)∗

(ϕn,1)−1
∗

By universality of direct limit of groups, this gives a unique homomorphism Ψ : K0(A⊗K)→ K0(A) such that

K0(A)

K0(A⊗K)

K0(Mn(A))

Ψ(ϕn,1)−1
∗

ψ∞,n

where ψ∞,n : K0(Mn(A))→ lim−→K0(Mn(A)) ∼= K0(A⊗K). Using that each (ϕn,1)−1
∗ is an isomorphism, it follows that

Ψ is also an isomorphism, whence K0(A) ∼= K0(A⊗K). The fact that the isomorphism is implemented by a 7→ a⊗v1,1

follows from the uniqueness of Ψ and that Ψ−1 = ψ∞,n ◦ (ϕn,1)∗ = (ψ∞,1)∗. �

Corollary 9.25. K0(K) = K0(C) = Z

Theorem 9.26. A short exact sequence of C∗-algebras

0 I A B 0
ϕ ψ

induces an exact sequence of groups.

K0(I) K0(A) K0(B)
ϕ∗ ψ∗

The previous theorem is saying that the functor K0 is half exact. It’s not exact as injectivity fails on

0 K(H) L(H) Q(H) 0ι π

and surjectivity fails on

0 C0((0, 1)) C([0, 1]) C⊕ C 0ι ϕ

where ϕ(f) := (f(0), f(1)). It’s not true that functor K00 is half exact. Consider the short exact sequence

0 C0(R2) C(S2) C 0ι π

The induced K00 sequence is

0 0 Z⊕ Z Z 0
ι∗ π∗
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9.3 Homotopy invariance of K0

Definition 9.27. Let A and B be C∗-algebras.

1. Two ∗-homomorphism ϕ,ψ : A → B are homotopic, denoted by ϕ ∼ ψ, if there is a path (γt)t∈[0,1] of
∗-homomorphism such that t 7→ γt(a) is continuous for every fixed a ∈ A and such that γ0 = ϕ, γ1 = ψ.

2. A is homotopically equivalent to B if there are maps ϕ : A→ B and ψ : B → A such that ϕ ◦ ψ ∼ idB and
ψ ◦ ϕ ∼ idA.

3. B is a deformation retract of A if there ϕ : A → B and ψ : B → A such that ϕ ◦ ψ = idB and ψ ◦ ϕ ∼ idA.
In this case ϕ is a a deformation retraction.

4. We say A is contractible when the identity map idA : A→ A is homotopic to the zero map 0 : A→ A.

Theorem 9.28. If ϕ,ψ : A→ B are homotopic, then ϕ∗ = ψ∗ : K0(A)→ K0(B)

Proof. There is (γt)t∈[0,1] with t 7→ γt(a) continuous for every fixed a ∈ A and such that γ0 = ϕ, γ1 = ψ. Take any

projection p ∈Mk(A+), t 7→ γ+
t (p) is a continuous path of projections from ϕ+(p) to ψ+(p); whence ϕ+(p) ∼h ψ+(p).

Therefore [ϕ+(p)] ∼ [ψ+(q)]. That ψ∗ = φ∗ now follows because any element in K0(A) looks like [p]− [q]. �

Corollary 9.29. Let A and B be C∗-algebras.

1. If A is homotopically equivalent to B, then K0(A) ∼= K0(B).

2. If B is a deformation retract of A, then K0(A) ∼= K0(B)

3. If A is contractible, then K0(A) ∼= {0}.

Example 9.30. If X is a compact Hausdorff space that is contractible, then C(X) is homotopically equivalent to C.
Therefore, K0(C(X)) ∼= Z.

Definition 9.31. Let A and B be a C∗-algebra.

1. The cone of A is CA := {f ∈ C([0, 1], A) : f(0) = 0}; this is a C∗-algebra with pointwise operations and sup
norm.

2. The suspension of A is SA := {f ∈ CA : f(1) = 0}; this is a C∗-subalgebra of CA.

3. If ϕ : A→ B is a ∗-homomorphism, the mapping cone for ϕ is Cϕ := {(a, f) ∈ A⊕ CB : f(1) = ϕ(a)}

Proposition 9.32. CA is a contractible C∗-algebra. SA is contractible if A is contractible.

Proof. First we show that idCA ∼ 0. Indeed, for each t ∈ [0, 1] define γt : CA → CA by (γt(f))(s) := f(ts)
for any s ∈ [0, 1]. Clearly t 7→ γt(s) is continuous and of course γ0 = 0 and γ1 = idCA. Now suppose that A is
contractible. That is there are maps αt : A → A such that α0 = idA and α1 = 0. Then, define βt : SA → SA by
(βt(f))(s) := αt(f(s)) for any s ∈ [0, 1]. Continuity of βt follows from continuity of αt, β0 = idSA and β1 = 0. �

10 Unitaries and K1

As we’ve been doing so far, if π : A+ → C is the map (a, λ) 7→ λ, we also denote by π to the induced entry-wise map
Mn(A+)→Mn(C). We denote by 1n to the identity matrix in Mn(C).

Definition 10.1.

GL+
n (A) := {a ∈Mn(A+) : a is invertible, π(a) = 1n} ⊂ GLn(A+) GL+

∞(A) :=

∞⋃
n=1

GL+
n (A)

U+
n (A) := {u ∈Mn(A+) : u∗u = uu∗ = 1Mn(A+), pi(u) = 1n} ⊂ Un(A+) U+

∞(A) :=

∞⋃
n=1

U+
n (A)

Of course GL+
n (A) ⊂ GL+

n+1(A) via a 7→ diag(a, 1), whence if a ∈ GL+
n (A), we regard it as an element of GL+

∞(A)
written as diag(a, 1∞) (similarly for U+

n (A)). These are all topological groups, the topology on the “∞” ones comes
from the direct limit topology. For each of these groups, we denote the connected component of 1 by adding a 0

subscript. . Moreover, if A is unital and n ∈ Z>0 ∪∞, then GL+
n (A) ∼= GLn(A) and U+

n (A) ∼= Un(A).

Lemma 10.2. If u and v are unitaries in a C∗-algebra with ‖u− v‖ ≤ 2, then u ∼h v. In particular U+
n (A) is locally

path connected and connected components coincide with path compotents.
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Sketch of Proof. That ‖u− v‖ < 2 implies that σ(uv∗) has a gap arround 2. Then we can use continuous functional
calculus to define

ut := (exp(t log(uv∗)))v

Since u∗tut = u∗tut = 1, u0 = v and u1 = u we’ve found a path of unitaries connecting u and v. In particular if both u
and v are normalized matrices (that is π(u) = π(v) = 1n) it also follows that π(ut) = 1n “�”

Remark 10.3. Since we have Borel functional calculus in L(H), then any two unitaries are homotopicaly equivalent
in L(H) (in fact this is the case for any von-Neumann algebra). An result we’ll use is that Un(C) is connected (same
for GLn(C)).

Proposition 10.4. For n ∈ Z>0 ∪ {∞},

GL+
n (A)/GL+

n (A)0
∼= U+

n (A)/Un(A)0
∼= GLn(A+)/GLn(A+)0

∼= Un(A+)/U(A+)0

Sketch of Proof. That GL+
n (A)/GL+

n (A)0
∼= U+

n (A)/Un(A)0 comes from the map induced by the map GL+
n (A) →

U+
n (A) given by a 7→ a|a|−1. That GLn(A+)/GLn(A+)0

∼= GL+
n (A)/GL+

n (A)0 comes from the map a 7→ aπ(a−1) from
GLn(A+)→ GL+

n (A). “�”

Definition 10.5. We define K1(A) to be any of the isomorphic groups of the previous Proposition with n =∞. For
u ∈ U+

n (A), we denote by [u] ∈ K1(A) to the element in U+
∞(A)/U∞(A)0 given by the connected component that

contains diag(u, 1∞).

Theorem 10.6. K1(A) is an Abelian group with multiplication [u][v] := [uv] = [diag(u, v)].

Proof. First, we show that multiplication is well defined. Suppose [u0] = [u1] and [v0] = [v1] and assume with no loss
on generality that all matrices lie on Mk(A+) for a suffciently large k. Then we have homotopies ut and vt in U+

k (A),
t 7→ utvt is the path connecting u0v0 with u1v1. One also checks that diag(uv, 1) ∼h diag(u, v) ∼h diag(v, u) ∼h
diag(vu, 1). This gives [uv] = [diag(u, v)] and that the group is Abelian. �

We now list several properties of K1.

Proposition 10.7. Let A and B be C∗-algebras.

1. If ϕ : A→ B is a ∗-isomorphism, then there is a well defined group homomorphism ϕ∗ : K1(A)→ K1(B) given
by

ϕ∗([u]) := [ϕ+(u)],

where u ∈ M∞(A+) is either an invertible element or an unitary. This makes K1 into covariant functor from
the category of C∗-algebras to the one of Abelian groups.

2. K1 is half exact.

3. K1(A⊕B) = K1(A)⊕K1(B).

4. K1 is a homotopy invariant functor. In particular K1(A) = 0 if A is contractible.

5. Let ((Ai)i∈Λ, (ϕj,i)i≤j) be a directed system of C∗-algebras. Then ((K1(Ai))i∈Λ, ((ϕj,i)∗)i≤j) is a directed system
of groups and

K1(lim−→Ai) ∼= lim−→K1(Ai)

6. Let K := K(H) for a separable Hilbert space H. Then

(a) K1(A) ∼= K1(A⊗K).

(b) K1(A) ∼= U+
1 (A⊗K)/U+

1 (A⊗K)0
∼= GL+

1 (A⊗K)/GL+
1 (A⊗K)0.

Example 10.8. Below we say why all groups K1(C), K1(L(H), and K1(K(H)) are the trivial group.

1. GLn(C) is connected so all unitaries are equivalent. The same happens for L(H) because the Borel functional
calculus on log : S1 → C can be used to connect any two unitaries in L(Hn) ∼= L(H). Hence K1(C) ∼= K1(L(H) ∼=
{0}.

2. K1(K(H)) ∼= lim−→K1(Mn(C)) ∼= lim−→K1(L(Cn)) = {0}.
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10.1 Suspended C∗-algebras

The suspension of A was defined as SA := {f ∈ C([0, 1], A) : f(0) = f(1) = 0}. Equivalently, we have

SA ∼= A⊗ C0(R) ∼= C0(R, A) ∼= C0((0, 1), A) ∼= {f ∈ C(S1, A) : f(1) = 0}.

We omit the proof of the following technical result

Theorem 10.9. There is a natural isomorphism K1(A) ∼= K0(SA).

Example 10.10. Notice that (SC)+ = C(S1). Then, K1(C(S1)) ∼= K0(C) = Z.

A much deep result, known as Bott periodicity, says that K0(A) ∼= K1(SA).

10.2 The index map

Given a short exact sequence of C∗-algebras,

0 I A B 0
ϕ ψ

(10.11)

we get two half exact sequences of K groups:

K0(I) K0(A) K0(B)

K1(B) K1(A) K1(I)

ϕ∗ ψ∗

δ1

ψ∗ ϕ∗

(10.12)

We wish to connect them by constructing a map δ1 : K1(B)→ K0(I). This map will come from the universal property
of K1:

Since K1 is defined as the quotient U+
∞(A)/U∞(A)0, then it has a universal property. Indeed, assume that H is

an (additive) Abeliean group and that ϕ is a group homomorphism such that ϕ(u) = ϕ(v) whenever [u] = [v] and
ϕ(1) = 0. Then, there is a unique group homomorphism ψ such that

U+
∞(A) H

K1(A)

[·]

ϕ

ψ

We also need to recall that any C∗-algebra induces the split short exact sequence

0 A A+ C 0ι π

σ

We then get a scalar map s : A+ → A+ given by s = σ ◦ π. This scalar map has the following properties

• s(a, λ) = (0, λ) = λ1.

• π(s(x)) = π(x) for all x ∈ A+

• x− s(x) ∈ A ⊂ A+ for all x ∈ A+

We need the following somewhat technical lemma

Lemma 10.13. We have the short exact sequence in 10.11 and u ∈ Un(B+).

1. There is v ∈ U2n(A+) and a projection p ∈M2n(I+) such that ψ+(v) = diag(u, u∗), ϕ+(p) = vdiag(1n, 0)v∗ and
s(p) = diag(1n, 0).

2. If there is w ∈ U2n(A+) and a projection q ∈M2n(I+) such that ψ+(w) = diag(u, u∗) and ϕ+(p) = w∗diag(1n, 0)w∗,
then s(q) = diag(1n, 0) and q ∼u q.

Definition 10.14. The previous lemma guarantees that the map α : U∞(B+)→ K0(I) given by

α(u) := [p]− [s(p)]

is well defined.

Furtermore, we have that
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1. α(u1u2) = α(u1) + α(u2).

2. α(1) = 0.

3. α(u1) = α(u2) whenever [u1] = [u2].

4. α(ψ+(v)) = 0 for all v ∈ U∞(A+).

5. ϕ∗(α(u)) = 0 for all uU∞(B+)

Definition 10.15. Using the universal property of K1, there is a unique group homomorphism δ1 : K1(B)→ K0(I)
such that

δ1([u]) = α(u)

This map is called the index map for 10.11.

By construction im(ψ∗) ⊂ ker(δ1) and im(δ1) ⊂ ker(ϕ∗). With some work we can show the reverse inclusions. This is
exactness of the sequence 10.12 at K1(B) and K0(I).

Example 10.16. Let H be a separable infinite dimensional Hilbert space and write K := K(H), L := L(H) and
Q := L/K. We get a short exact sequence

0 K L Q 0

We already know that K0(K) = Z, K0(L) = K0(Q) = {0} and that K1(K) = K1(L) = {0}. Thus, we have the
following exact sequence

Z {0} {0}

K1(Q) {0} {0}

δ1

This implies that the index map, whatever it looks like, is an isomorphism. Hence, K1(Q) ∼= Z.

Example 10.17. Let H be a separable infinite dimensional Hilbert. Recall that a map u ∈ L(H) is Fredholm if
u(H) is closed, and both ker(u) and ker(u∗) are finite dimensional. Its index is

ind(u) := dim(ker(u))− dim(ker(u∗))

The following are equivalent definitions for u to be Fredholm

• There is v ∈ L(H) such that 1− vu, 1− uv are compact.

• If π : L(H)→ Q(H) is the quotient map, then π(u) is invertible in Q(H).

Recall that K0(K(H)) ∼= Z via the map induced by p 7→ dim(p(H)) = Tr(p). The Fredholm index is in fact a disguised
version of the index map:

ind(u) = (Tr∗ ◦ δ1)([π(u)])

11 K-theory for some examples

11.1 AF-Algebras

Definition 11.1. A partially ordered group is a pair (G,≤) consisting of an Abelian group G and a partial order
≤ on G such that if G+ := {g ∈ G : 0 ≤ g} then G = G+ −G+ and if g1 ≤ g2 then g1 + g ≤ g2 + g for all g ∈ G.

Definition 11.2. If G is an abelian group and N is a subset of G such that N + N ⊂ N , G = N − N and
N ∩ (−N) = {0}, we call N a cone on G. Given a cone we get a partial order on G be letting g1 ≤ g2 if and only if
g2 − g1 ∈ N . In this case G+ = N.

Theorem 11.3. Let A be an AF-algebra. Then V (A) is a cone in K0(A).

Definition 11.4. If ϕ : G1 → G2 is a group homomorphism between partially ordered groups, we say ϕ is positive if
ϕ(G1+) ⊂ G2+. If in adition ϕ is an isomorphism for which ϕ−1 is also positive, we say ϕ is an order isomorphism.

Definition 11.5. If A and B are unital C∗-algebras and τ : K0(A)→ K0(B) is a homomorphism, we say τ is unital
if τ([1A]) = [1B ].

Theorem 11.6. Let A and B be unital AF-algebras and τ : K0(A)→ K0(B) a unital order isomorphism. Then there
is a ∗-isomorphism ϕ : A→ B such that ϕ∗ = τ .

Corollary 11.7. Two unital AF-algebras are isomorphic if and only if there is a unital order isomorphism between
their K0 groups.

30



11.2 The Toeplitz Algebra

Definition 11.8. Let H be a separable Hilbert space with orthonormal basis {ξ1, ξ2, . . .}. The unilateral shift on
L(H) is the operator s(ξn) = ξn+1. It’s easy to check that s∗s = 1. The Toeplitz algebra is the unital C∗-alegbra
T in L(H) generated by s.

The closed two sided ideal in T generated by 1 − ss∗ is K := K(H). One can show that T /K ∼= C(S1). Thus, the
exact sequence

0 K T C(S1) 0

Induces an exact sequence (we haven’t talk at all about the map δ0 : K0(B)→ K1(A) though)

Z K0(T ) Z

Z K1(T ) {0}

δ0δ1

which can be used to deduce that K0(T ) = Z and K1(T ) = 0.

11.3 Cuntz Algebras

Let n ≥ 2 be an integer andH an infinite dimensional separable Hilbert space. Then, there are elements s1, s2, . . . , sn ∈
L(H) such that

s∗jsj = 1 and

n∑
j=1

sjs
∗
j = 1 (11.9)

Definition 11.10. We define On, the Cuntz algebra of order n, as C∗(s1, . . . , sn). In fact, the construction of On is
independent of the Hilbert space H and the choice of isometries as long as the relations 11.9 are satisfied.

The algebra On is a simple C∗-algebra and has the following universal property: If A is a unital C∗-algebra containing
elements a1, . . . , an such that

a∗jaj = 1 and

n∑
j=1

aja
∗
j = 1,

then there is a unique ∗-homomorphism ϕ : On → A such that ϕ(sj) = aj .

Remark 11.11. The projections sjs
∗
j are muttually orthogonal, therefore

[1] =

n∑
j=1

[sjs
∗
j ] =

n∑
j=1

[s∗jsj ] = n[1]

This gives (n− 1)[1] = 0. So K0(On) has torsion.

Theorem 11.12. K0(On) ∼= Z/(n− 1)Z and K1(On) ∼= {0}.

Sketch of Proof. We will not show that K1(On) ∼= {0}, although this fact will be used. Consider v1, . . . , vn+1 to be
n+ 1 isometries whose range projections add up to 1. Then En := C∗(v1, . . . , vn) 6= On. Let Jn be the ideal generated
by vn+1v

∗
n+1 in En. Then Jn ∼= K(H) and En/Jn ∼= On. Cuntz proved that K0(En) = Z. Thus, the exact sequence

0 Jn En On 0

Induces an exact sequence

(n− 1)Z Z K0(On)

{0} K1(En) {0}

δ0δ1

Hence, K0(On) ∼= Z/(n− 1)Z. “�”
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11.4 Rotation Algebras

For θ ∈ R we consider the homeomorphism ϕθ : S1 → S1 given by rotation by the angle 2πθ:

ϕθ(z) = ei2πθz

This gives a homeomorphism hθ : C(S1)→ C(S1) given by

hθ(f)(z) = f(ϕθ(z))

and therefore we get an action of Z on C(S1). We extend hθ : C(S1) → C(S1) to hθ : L(L2(S1)) → L(L2(S1)),
with h∗θ = h−θ. This makes hθ into a unitary on L2(S1). Also C(S1) can be faithfully represented on L2(S1)as
multiplication operators via f 7→ mf . Let id : S1 → C be the identity map, then mid is a unitary on L2(S1). Notice
that for any g ∈ L2(S1)

[hθ(midg)](z) = ei2πθzg(ei2πθz) = ei2πθ[mid(hθ(g))](z)

That is, hθ ◦mid = ei2πθmid ◦ hθ.

Definition 11.13. We define Aθ as the unital C∗-algebra generated by two unitaries u, v satysfying vu = ei2πθuv.
Equivalently

• Aθ = C∗(Z, C(S1), hθ).

• If θ is irrational, Aθ is isomorphic to the C∗-subalgebra of L(L2(S1)) generated by mid and hθ.

When θ is irrational, hθ and 1 are not homotopic unitaries in Aθ, but hθ∗ = 1 as a map on K-theory. This fact,
together with the Pimsner-Voiculescu sequence (we did not discussed this) regarding Aθ as a corssed product, yields

K0(Aθ) ∼= K1(Aθ) ∼= Z⊕ Z.

12 Hilbert Modules

Definition 12.1. A Hilbert A-module E is a right A-module together with a pairing 〈·, ·〉 : E × E → A such that

1. For each η ∈ E, the map 〈ξ, ·〉 : E → A is linear,

2. 〈ξ, ηa〉 = 〈ξ, η〉a for any ξ, η ∈ E and a ∈ A,

3. 〈ξ, η〉 = 〈η, ξ〉∗ for any ξ, η ∈ E,

4. 〈ξ, ξ〉 ≥ 0 in A for any ξ ∈ E and if 〈ξ, ξ〉 = 0, then ξ = 0.

5. E is complete with the norm ‖ξ‖ := ‖〈ξ, ξ〉‖1/2.

The pairing 〈·, ·〉 : E × E → A satisfying 1-4 above is referred to as an “A-valued inner product”.

We have to check that ‖ξ‖ := ‖〈ξ, ξ〉‖1/2 actually gives a norm. To get the triangle inequality one needs a version of
Cauchy-Schwarz:

Proposition 12.2. Let E be a Hilbert A-module and ξ, η ∈ E. Then,

〈η, ξ〉〈ξ, η〉 ≤ ‖〈ξ, ξ〉‖〈η, η〉

In particular ‖〈ξ, η〉‖2 = ‖〈η, ξ〉〈ξ, η〉‖ ≤ ‖ξ‖2‖η‖2 and therefore

‖〈ξ, η〉‖ ≤ ‖ξ‖‖η‖

Proof. If ξ = 0, the result is clear. For ξ 6= 0, assume wlog that ‖〈ξ, ξ〉‖ = 1. Then, for any a ∈ A, by Proposition
3.5 we have a∗〈ξ, ξ〉a ≤ a∗a. Hence,

0 ≤ 〈ξa− η, ξa− η〉 = a∗〈ξ, ξ〉a− a∗〈ξ, η〉 − 〈η, ξ〉a+ 〈η, η〉 ≤ a∗a− a∗〈ξ, η〉 − 〈η, ξ〉a+ 〈η, η〉

If a := 〈ξ, η〉, this implies 〈η, ξ〉〈ξ, η〉 ≤ 〈η, η〉 and we are done. �

Lemma 12.3. Let E be a Hilbert A-module. Then EA = {ξa : ξ ∈ E, a ∈ A} is dense in E.

Proof. Let (uλ)λ∈Λ be an approximate unit for A. For any ξ ∈ E we have

‖ξuλ − ξ‖2 = 〈ξuλ − ξ, ξuλ − ξ〉 = uλ〈ξ, ξ〉uλ − 〈ξ, ξ〉uλ − uλ〈ξ, ξ〉+ 〈ξ, ξ〉

Thus, limλ ‖ξuλ − ξ‖2 = 0. �
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Definition 12.4. A Hilbert A-module E is full if 〈E,E〉 := span{〈ξ, η〉 : ξ, η ∈ E} is dense in A.

Remark 12.5. Even if E is not full, we always have E〈E,E〉 is dense in E. The same proof given in the previous
lemma works using an approcimate identity for the closure of the two sided ideal 〈E,E〉.

Example 12.6. Fix a C∗-algebra A.

1. Hilbert spaces are precisely Hilbert C-modules, with the Physicist’s convention of linearity in second coordinate
for the inner product.

2. A is itself a full Hilbert A-module when equipped with right multiplication as action and 〈a, b〉 := a∗b as A-valued
inner product. Any closed right ideal of A is a sub-A-module of A.

3. if E1, . . . , En are Hilbert A-modules, the direct sum

k⊕
n=1

Ek := {ξ = (ξ1, . . . , ξn) : ξk ∈ Ek}

is again a Hilbert A-module with the component-wise right action of A and A-valued inner product

〈ξ, η〉 :=

n∑
k=1

〈ξk, ηk〉

4. If (Eλ)λ∈Λ is an arbitrary family of Hilbert A-modules, we can form their direct sum

⊕
λ∈Λ

Eλ :=

{
ξ = (ξλ)λ∈Λ ∈

∏
λ∈Λ

Eλ :
∑
λ∈Λ

〈ξλ, ξλ〉 converges in A

}

which is a right A-module with coordinate-wise action and it becomes a Hilbert A-module when equipped with
the well defined A-valued inner product

〈ξ, η〉 :=
∑
λ∈Λ

〈ξλ, ηλ〉

5. A particular case of the above one is when Λ = Z>0 and each Eλ := A. This is called the standard Hilbert
A-module and denoted by HA

HA :=

a = (aj)
∞
j=1 ∈

∞∏
j=1

A :

∞∑
j=1

a∗jaj converges in A


6. Let X be a compact Hausdorff space and π : E → X a complex vector bundle over X. Let Γ(E) be the space of

continuous sections of E equipped with a Riemannian metric. Then, Γ(E) is a Hilbert C(X)-module with inner
product 〈σ1, σ2〉(x) := g(σ1(x), σ2(x)).

For an arbitrary C∗-algebra A, the Hilbert A-modules are a good generalization of Hilbert spaces. However, many nice
properties of Hilbert spaces, such as complementability of subspaces, are not guaranteed for general Hilbert A-modules.

Example 12.7. Let A := C(X) for a compact Hausdorff space X. Regard A as a Hilbert A-module. Let Y be a
closed subset of X such that X \ Y is dense in X. Let E := {f ∈ A : f(Y ) = {0}}. Then E is a proper sub-A-module
of A. Notice that E⊥ := {g ∈ A : gf = 0 ∀ f ∈ E} = {0} and therefore E ⊕ E⊥ 6= A. Further, E 6= E⊥⊥ = A.
A similar thing happens with the submodule C0((0, 1)) of C([0, 1]). Turns out that a closed submodule of a Hilbert
A-module is complementable precesely when it’s the range of an adjointable map.

Nevertheless, Hilbert-A modules provide a good tool to study the C∗-algebra A. For example, one can visualize
the multiplier algebra of A using some kind of operators between Hilbert A-modules, the adjointable ones (see the
definition below). Also, there are alternate descriptions of K0(A) using isomorphism classes of finitely generated
projective A-modules or some particular kind of projections in HA.

Definition 12.8. Let E and F be a Hilbert A-modules. A map t : E → F is said to be adjointable if there is a map
t∗ : F → E such that for any ξ ∈ E, and η ∈ F

〈t(ξ), η〉 = 〈ξ, t∗(η)〉

The space of adjointable maps from E to F is denoted by L(E,F ) and L(E) := L(E,E).

It’s easy to check that adjointable maps are module maps that are actually bounded linear maps with the usual
operator norm and that L(E) is a C∗-algebra.
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Example 12.9. Not every bounded linear map between Hilbert modules is adjointable. Indeed, let E := C(X) for
a compact Hausdorff space X and F := {f ∈ C(X) : f(Y ) = {0}} where Y is a closed non-empty subset of X such
that X \ Y is dense in X. Consider the inclusion ι : F → E, which is clearly a bounded linear map. However, it’s not
adjointable. Assume on the contrary that ι is adjointable. Then, fg = fι∗(g) for all f ∈ F and g ∈ E, in particular if
g = 1 we would have f = fι∗(1) for all f ∈ F and this implies ι(1)(x) = 1 for all x 6∈ Y . By density of X \ Y we get
that ι∗(1) = 1 but 1 6∈ F .

Lemma 12.10. An element t ∈ L(E) is positive if and only if 〈tξ, ξ〉 ≥ 0 for all ξ ∈ E.

Proof. The usual proof on Hilbert spaces uses ker(t)⊥ = im(t∗) but this fails for general Hilbert modules E. One
direction is clear: If t is positive then t = s∗s for some s ∈ L(E), whence 〈tξ, ξ〉 = 〈sξ, sξ〉 ≥ 0. Conversely, assume
that 〈tξ, ξ〉 ≥ 0 for all ξ ∈ E. Then, 〈tξ, ξ〉 = 〈tξ, ξ〉∗ = 〈ξ, tξ〉 = 〈t∗ξ, ξ〉 for any ξ ∈ E. Since the polarization identity
is valid for the A-valued inner product we have t∗ = t, so t is self adjoint. By Lemma 3.2 we write t = t+ − t− where
t+, t− ≥ 0 and t+t− = 0 = t−t+. Suffices to prove that t− = 0. Well, for any η ∈ E we have

0 ≤ 〈(t+ − t−)η, η〉 = 〈t+η, η〉 − 〈−t−η, η〉

Thus, 〈t−η, η〉 ≤ 〈t+η, η〉. Hence, since t− ≥ 0, clearly t3+ ≥ 0, whence

0 ≤ 〈t3−ξ, ξ〉 = 〈t2−ξ, t−ξ〉 ≤ 〈t+t−ξ, t−ξ〉 = 0

This says t3− = 0 (again by polarization) but of course this means that t− = 0. �

Definition 12.11. Let E and F be a Hilbert A-modules. For ξ ∈ E and η ∈ F , we define a map θξ,η : F → E by

θξ,η(ζ) := ξ〈η, ζ〉

One easily checks that θξ,η ∈ L(E,F ), that (θξ,η)∗ = θη,ξ ∈ L(F,E) and that ‖θξ,η‖ ≤ ‖ξ‖‖η‖. This gives an analogous
of the class of rank-one operators on Hilbert spaces. So, we define an analogous of the compact operators by letting

K(E,F ) := span{θξ,η : ξ ∈ E, η ∈ F}

It’s also not hard to verify that if E,F,G are Hilbert A-modules, u ∈ L(E,G) and v ∈ L(G,F ) then

• uθξ,η = θuξ,η

• θξ,ηv = θξ,v∗η

In particular K(E) := K(E,E) is a closed two sided ideal in L(E), whence K(E) is also a C∗-algebra. We have to be
careful and not call these maps compact operators, in fact they do not have to be compact as maps between the two
Banach spaces E and F . For example, if A is an infinite dimensional unital C∗ algebra and E = F = A with inner
product given by a∗b, then idA = θ1,1 ∈ K(A) is not a compact operator.

Theorem 12.12. If we regard A as a Hilbert A-module, then A ∼= K(A) as C∗-algebras.

Proof. Define a map Φ : K(A) → A by letting Φ(θa,b) = ab∗ and extending to all of K(A). We check that Φ is a
∗-homomorphism. Indeed, multiplicativity follows because θa,bθc,d = θab∗c,d. Since θ∗a,b = θb,a and (ab∗)∗ = ba∗, Φ
preserves the involution. Also θa,b = 0 if and only if ab∗ = 0, whence Φ is injective. For any a ∈ A, if (uλ)λ∈Λ is
an approximate unit for A, then (θuλ,a∗)λ∈Λ is a Cauchy net in K(A) and clearly Φ(limλ θuλ,a∗) = a, so surjectivity
follows. �

Recall from Example 4.9 that K(H) is an essential ideal in L(H) and that M(K(H)) = L(H). This is also the case for
Hilbert modules. We only deal with the particular case E = A.

Theorem 12.13. K(A) is an essential ideal in L(E).

Proof. Suppose t ∈ L(E) is such that tK(A) = {0}. We have to show t = 0. Well, for any a, b ∈ A we
have 0 = tθa,bc = θta,bc = t(a)b∗c = t(ab∗c). In particular if (uλ)λ∈Λ is an approximate unit for A, we have

t(a) = t(limλ auλ) = limλ t(au
1/2
λ u

1/2
λ ) = 0. So t = 0 as wanted. �

We know from the discussion previous to Example 4.9 that the multiplier algebra M(A) is the largest unital algebra
containing A as an essential ideal. Since we’ve already shown that A ∼= K(A) sits in L(A) as an essential ideal, to
prove that M(A) ∼= L(A) it suffices to prove maximality. For this we first need to talk about representations of A on
Hilber modules and a couple of lemmas.

Definition 12.14. Let A, C be C∗-algebras and E a Hilbert C-module. A rrepresentation of A on E is a ∗-
homomotphism ϕ : A → L(E). As for Hilbert spaces, we say that ϕ is non-degenerate when ϕ(A)E is dense in
E.
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Lemma 12.15. Identify A ∼= K(A) and look at the inclusion ι : A→ L(E). This is a non-degenerate representation.

Proof. It’s obviously a representation. Recall that A〈A,A〉 is dense in A, so prove that ι(A)A is dense in A it suffices
to prove ι(A)A〈A,A〉 is dense in A〈A,A〉. Let (vλ)λ an approximate unit for ι(A) = K(A). Then, for a〈b, c〉 ∈ A〈A,A〉

lim
λ
vλ(a〈b, c〉) = lim

λ
vλθa,b(c) = θa,b(c) = a〈b, c〉

as wanted. �

Lemma 12.16. Let A, B and C be C∗-algebras such that A is an ideal in B and E is a Hilbert C-module. Suppose
that ϕ : A → L(E) is a non-degenerate representation. Then, ϕ extends uniquely to a unique ∗-homomorphism
ϕ′ : B → L(C), Furthermore, if ϕ is injective and A is essential, then ϕ′ is injective.

Proof. For b ∈ B we define ϕ′(b) : ϕ(A)E → E by

ϕ′(b)

(
n∑
k=1

ϕ(aj)ξj

)
:=

n∑
k=1

ϕ(baj)ξj

Let (uλ)λ∈Λ be an approximate unit for A. Then,∥∥∥ n∑
k=1

ϕ(baj)ξj

∥∥∥ = lim
λ

∥∥∥ n∑
k=1

ϕ(buλaj)ξj

∥∥∥ = lim
λ

∥∥∥ϕ(buλ)

n∑
k=1

ϕ(aj)ξj

∥∥∥ ≤ lim
λ
‖ϕ(buλ)‖

∥∥∥ n∑
k=1

ϕ(aj)ξj

∥∥∥ ≤ ‖b‖∥∥∥ n∑
k=1

ϕ(aj)ξj

∥∥∥
Thus, ϕ′(b) extends by density to a unique well defined map ϕ′(b) : E → E. In a similar way (using (uλ)λ) we can
check that ϕ′(b) ∈ L(E) with ϕ′(b∗) = ϕ′(b)∗. Thus, ϕ′ is indeed a ∗-homomorphism extending ϕ.

Finally, if in addition ϕ is injective and A an essential ideal, the ideal ker(ϕ′) intersected with A is the ker(ϕ) = {0}. But
essential ideals have non-zero intersection with any non-zero ideal of B. Thus, ker(ϕ′) = {0}, whence ϕ′ is injective. �

Theorem 12.17. M(A) ∼= L(A).

Proof. As we already pointed out, suffices to show that if B is any other C∗-algebra containing A as an essential
ideal is contained in L(A). Indeed, consider the inclusion ι : A→ L(A), combining the previous two lemmas we get a
unique injective extension ι′ : B → L(A). �

Remark 12.18. A direct proof of the previous theorem (that requires to see M(A) as double centralizers) is to check
that the map t 7→ (t, t̃) is a ∗-isomorphism from L(A) to M(A), where t̃(a) := t∗(a∗)∗.

Remark 12.19. One needs more work to show a more general result M(K(E)) ∼= L(E). If K := K(H) for a separable
infinite dimensional Hilbert space H, one can show that K(HA) ∼= K⊗A. Then, one gets at once M(K⊗A) ∼= L(HA).

12.1 Morita Equivalence

Given a Hilbert A-module E, there is a connection between the C∗-algebras A and K(E). Observe that E is a left
K(E)-module when equipped with the obvious left action v · ξ := v(ξ). Further, there is a K(E)-valued left inner
product on E defined by

(ξ, η) := θξ,η

for any ξ, η ∈ E. Indeed:

• (ξ1 + αξ2, η) = θξ1+αξ2,η = θξ1,η + αθξ2,η.

• (vξ, η) = θvξ,η = vθξ,η = v(ξ, η).

• (ξ, η)∗ = θ∗ξ,η = θη,ξ = (η, ξ).

• 〈(ξ, ξ)η, η〉 = 〈ξ〈ξ, η〉, η〉 = 〈ξ, η〉∗〈ξ, η〉 ≥ 0, whence (ξ, ξ) ≥ 0 by Lemma 12.10.

• If (ξ, ξ) = 0, then 〈ξ, ξ〉 = 0 and therefore ξ = 0.

• Since ‖(ξ, ξ)‖ = ‖〈ξ, ξ〉‖ (≤ is immediate and ≥ requires some play with functional calculus), it follows that E
is complete with the norm induced by (·, ·).
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Hence E is also a left Hilbert K(E)-module. Even better, the right action of A on E is compatible with the left action
of K(E) on E. Indeed, for v ∈ K(E), ξ ∈ E and a ∈ A

(v · ξ)a = v(ξ)a = v(ξa) = v · (ξa)

The correct terminology is to say that E is a Hilbert (K(E), A)-bimodule.

Definition 12.20. Two C∗-algebras A and B are said to be Morita equivalent if there is a Hilbert (A,B)-bimodule
E (we use A(·, ·) for A-valued inner product and 〈·, ·〉B for the B-valued one) such that

1. E is a full left Hilbert A-module, E is a full right Hilbert B-module.

2. For all ξ, η, ζ ∈ E, a ∈ A and b ∈ B

(2.1) 〈aξ, η〉B = 〈ξ, a∗η〉B .

(2.2) A(ξb, η) = A(ξ, ηb∗).

(2.3) A(ξ, η) · ζ = ξ · 〈η, ζ〉B .

If A and B are Morita equivalent C∗-algebras, then the module E implementing the equivalence is called an A-B
imprimitivity bimodule.

Example 12.21. LetH be an infinite dimensional Hilbert space. Then C and K(H) are Morita equivalent C∗-algebras
via the K(H)-C imprimitivity bimodule H.

If A and B are Morita equivalent, there is an equivalence between the categories of representations of A and represen-
tations of B. To see this, we need to discuss first inner tensor products of Hilbert modules.

12.2 Inner Tensor product

Let A and B be C∗-algebras. Suppose E is a Hilbert B-module, that F is a Hilbert A-module and that there is a
∗-homomorphism φ : B → L(F ). This naturally makes F a left B-module with the action induced by φ. We can then
form the algebraic tensor product of E and F over B, denoted by E �B F . To do so, we start with the algebraic
tensor product E � F and take the quotient by the subspace generated by

{ξb⊗ η − ξ ⊗ φ(b)η : ξ ∈ E, η ∈ F, b ∈ B}

This quotient is E �B F . We abuse notation and call the image of ξ ⊗ η in E �B F also by ξ ⊗ η. Then, E �B F is a
right A-module with an action defined by

(ξ ⊗ η)a = ξ ⊗ (ηa)

We now define an A-valued inner product on E �B F . First we put

〈ξ ⊗ η, ξ′ ⊗ η′〉 := 〈η, φ(〈ξ, ξ′〉)η′〉

for any ξ, ξ′ ∈ E and η, η′ ∈ F . One checks that this is indeed a well defined A-valued inner product on E �B F , so
to get a Hilbert A-module we complete E �B F with respect to the norm induced by this inner product. We denote
the completion E ⊗φ F and we call it the interior tensor product of E and F by φ.

Theorem 12.22. If A and B are Morita equivalent C∗-algebras, then the category of representations of A is equivalent
to the one on B.

Sketch of Proof. Let E be the A-B imprimitivity bimodule implementing the equivalence and π : B → L(Hπ) be a
representation of B. Write 〈·, ·〉B for the B-valued right inner product on E. Then, regarding Hπ as a right C-module,
we can form the Hilbert space E ⊗π Hπ whose inner product on elementary tensors looks like

〈ξ1 ⊗ υ1, ξ2 ⊗ υ2〉 = 〈υ1, π(〈ξ1, ξ2〉B)υ2〉)

for ξk ∈ E and υk ∈ HB . We define Indπ : A→ L(E ⊗π Hπ) by first letting

[Indπ(a)](ξ ⊗ υ) = (aξ)⊗ υ

and then extending to all E ⊗π Hπ. Using that A is Morita equivalent to B, this gives a ∗-homomorphism and
therefore Indπ is a representation of A. One checks that π is irreducible if and only if Indπ is irreducible and every
irreducible representation of A is of this form. The Functor Ind from the category of representations of A to the one
of representations of B is the one implementing the equivalence. “�”
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