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1 Fall 2016: Math 616

1.1 Theorems and Definitions.
1.1.1 Basic Measure Theory

Definition. Let X be a set. A toplogy on X is a set T C P(X) such that

(1) o, XeT.
2) KU,V ET, theaUNV eT.
(3) If {Uatacr €T, then U,c;Ua €T.

Elements of 7 are called open sets. A

Definition. Let X be a set. A o-algebra on X is a set M C P(X) such
that

(1) o,X em.
(2) If E €M, then X \ E € M.
(3) If {En}tneny €M, then |, oy En € M.

Elements of 9 are called measurable sets. A

Definition. Let X be a set and 9 a o-algebra on X. The pair (X,9) is
called a measurable space. A measure on (X,9M) is a function p : M —
[0, 00] such that

(1) w@)=o.
(2) If Eq, Es, ... are pairwise disjoint elements of 9, then

1 (U En) = > wEy).

neN neN

The triple (X, 9, ) is called a measure space. If u(X) < 0o, the measure
p is said to be finite; and if there is a partition {X,},en of X such that
pu(X,) < oo for all n € N, the measure p is said to be o-finite. A



Proposition. (Properties of measures) Let (X, ) be a measure space,
E,F € M such that E C F, {Ep}peny C M such that E, C E,y1, and
{Fp}nen C M such that F,, O Fyy1 and p(Fy) < oo. Then,

(a) w(E) < p(F).
(b) If p(E) < oo, then u(F'\ E) = u(F) — u(E).
(c)

7 (U E) = lim p(E,) and p (ﬂ F) = lim p(F,)

neN neN

Definition. Let (X,9) and (Y,D) be measurable spaces. A function
h : X — Y is said to be measurable if for all F € 9 it follows that
h=Y(F) € M. If (Y,T) is instead a toplogical space, we only ask that
h=Y(V) € 9 for any V € T. (In fact, any toplogical space is a measurable
one with the sigma algebra being the smallest one containing all open sets)
A

Definition. Let (X,9t) be a measurable space. A simple function
s : X — C is a function such that there exist aq,a9,...,a, € C and
Ei,Es,...E, € M such that X =| |}_, E} and

n
§= Z akXEk
k=1

Furthermore, if 41 is a measure on (X, ), we define the integral of s over
X with respect to pn as follows

/X s dp = iakM(Ek)

k=1

A

Lemma. Let (X,9N) be a measurable space. If f : X — [0, 00| is measurable
, there is a sequence (sp)22, of mon-negative simple functions such that
sn — [ pointwise and s, < sp41 for alln € N.

Definition. Let (X,9, 1) be a measure space and f : X — [0,00] a
non-negative measurable function. Denote by ST(X,90) the set of all non-
negative simple functions. We define the integral of f over X with



respect to yu as follows
/ fdu::sup{/ sdu:seST(X, M), sgf}
X X

Theorem. (Monotone Convergence Theorem) Let (X,9M, u) be a measure
space and (fp)nen be a sequence of measurable non-negative functions such
that

A

(i) fn < far1 for allm € N
(i) f(z):= nli_{gofn(x) forallz € X

Then, f is measurable and

/fdu— 1im/fndu
X n—oo X

Theorem. (Fatou’s Lemma) Let (X, 9, 1) be a measure space and ( frn)nen
be a sequence of measurable non-negative functions. Then,

/ liminf f, du <lim inf/ fn du
X n— oo X

n— oo

Notation. Let X be a set. For a function g : X — [—o00,00] we define
functions g4, g9- : X — [0, 00] by

g+ (2) = max{g(x),0} and g_(a) = max{—g(x),0}

Observe that ¢ = g+ — g—. For a function h : X — C we denote by
Reh,Imh : X — R the real and imaginary parts of h respectively. Observe
that h = Reh + iImh. \/

Definition. Let (X, 0, 1) be a measure space and let R be either [—o0o, o0]
or C. If f: X — R is measurable, we define the integral of f over X
with respect to u as follows

[ raui= [ ®er)du- [ vep)-ausi ( J sy dn= [ amp)- du)

Further, we say that f is integrable with respect to p if

J i< o



Theorem. (Lebesgue Dominated Convergence Theorem) Let (X, 9, 1) be a
measure space and (fn)nen be a sequence of measurable functions f, : X —
C such that

(i) f(z):= ILm fn(x) exists for all x € X
(ii) There is an integrable function g : X — [0,00) such that |f] < g.

Then, each f, and f are integrable. Moreover,

fdu= hm/fnd

1.1.2 Lebesgue Measure

Definition. Let X be a set. A function p* : P(X) — [0,00] is an outer
measure if

(1) w(@)=0.
(2) If AC BC X, then p*(A4) < u*(B).
(3) If A, Ag,... C X, then

w (U An> <Y u(4n)

neN neN

Furthermore, we say that F € P(X) is p*-measurable if for any A C X
we have

1 (A) = 1AM B) + 1" (AN (X \ B))
A

Remark. Intuitively, since ANE and AN (X \ E) are disjoint, we note that
w*-measurable sets are those that “break” any subset of X as expected with
respect to u*. v

Theorem. (Carathéodory construction) Let X be a set and p* an outer
measure. The p*-measurable sets form a o-algebra on X.



Definition. Let d € N. An open box in R? is a subset of the form
B .= (al,bl) X (ag,bg) X oo X (ad,bd)

where for each 1 < k < d we have that a; < b,. We define its volume by

d
vol(B) == [ [ (b — ax)

k=1
A

Definition. Let d € N. For any A C R? we denote by B(A) to the set of
all countable covers of A by open boxes and we define m} : P(R?) — [0, o0
by

mi(A) = inf {Zvol(Bn) {Bp}nen € B(A)}
n=1

Theorem. The function m, : P(RY) — [0, 0c] is an outer measure.

Definition. The Lebesgue measurable sets on R%, denoted by £, are
those m)-measurable sets and the Lebesgue measure on R?, denoted by
myq, is the restriction of m} to £4. A

Definition. If (X, T) is a toplogical space, the o-algebra B x generated by
all the open sets of X is called the Borel o-algebra of X and its elements
are called Borel sets. If 91 is another o-algebra on X and p a measure on
(X,9N), we say that u is a Borel measure if Bx C M. A

Theorem. Letd € N. Then Bra C £y and therefore mg is a Borel measure.

Definition. Let (X,T) be a toplogical space. We say that X is locally
compact if every point of X has an open neighborhood whose closure is
compact. A

Definition. Let (X,T) be a locally compact Hausdorff space. A Borel
measure p is said to be regular if

(1) wu(K) < oo for all K C X compact.
(2) wE)=if{wU):UeT,ECU}foral EcBx

(3) If E€®Bx with u(F) <ocorif E €T, then



(3.1) w(E)=sup{u(K): K iscompact ,K C E}
(3.2) w(E)=sup{u(C): X\CeT,CCFE}

Condition (2) is known as outer regular, (3.1) as strong inner regular
and (3.2) as weak inner regular. A

Theorem. Lebesgue measure my is regular.

Definition. Let X be a locally compact Hausdorff space. The set of con-
tinuous functions that vanish at infinity is defined as follows

Co(X)={feC(X): Ve>0,{ze X :|f(x)| >¢e} is compact }
The set of continuous functions with compact support is
Co(X):={f € C(X) : supp(f) is compact }
A

Theorem. Let X be a locally compact Hausdorff space and equip C(X)
with the sup norm. Then, Co(X) is closed in C(X) and C.(X) is dense in

Co(X).

Theorem. (Lusin) Let X be a locally compact Hausdorff space and p a
reqular Borel measure. If f: X — C is measurable and A C X is such that

(i) w(A) <oo
(i) f(x)=0 forallx ¢ A
Then, for all e > 0 there is g € C.(X) such that

(a) p({zeX: flz)#g(x)}) <e

(b) sup |g(x)| < sup |f(z)]
reX zeX

1.1.3 LP spaces
Definition. Let (X, 1) be a measure space and p € [1,00). The space
of p-integrable functions with respect to p is

LP(X, 90, 1) = {measurable functions f : X — C : |f|P is integrable}
LB = {measurable functions f: X — C: f =0 a.e [u]}




Theorem. Let (X, 1) be a measure space and p € [1,00). Put

= ( /. If”)l/p

Then, || - ||p : LP(X, 9, ) — [0,00) is a well defined norm (so from now on
we write || fllp == ||[f]llp) and LP(X, 9N, 1) is complete with respect to this
norm.

Theorem. (Holder) Let (X,9M, ) be a measure space and p,q € (1,00)
such that % —I—% =1. If f e LP(X, M, u) and g € LY(X, M, ), then fg €
LY(X, 9, 1) and

19l < 1 fllpllgllq

Definition. Let (X,9, ) be a measure space. A measurable function
f X — Cis said to be essentially bounded with respect to p if

| flloo :=inf{a>0: p({z € X : |f(x)] > a}) =0} < 0
The space of essentially bounded functions is denoted by L>(X, 9, ). A

Theorem. Let (X,9M, 1) be a measure space. Then, |||l is a well defined
norm and L*™(X,0M, 1) is complete with respect to this norm.

Theorem. Let (X, M, ) be a measure space. If f € LY(X, M, u) and g €
L>®(X, M, 1), then fg € LY(X, M, u) and

1fglly < [ fllpllgll

1.1.4 Complex and Signed measures

Definition. Let (X,9) be a measurable space. A function v : MM — C is
a complex measure if whenever F1, s, ... are pairwise disjoint elements
in 9, it follows that

v (U En> = Zy(En)
neN neN

As consequence of this definition we see that v(&) = 0 and that p may not
assume infinite values. A



Definition. Let (X,9) be a measurable space. A function v : MM —
(—00, 0] (or — [—00,0)), is a signed measure if whenever Ey, Fs, ... are
pairwise disjoint elements in 91, it follows that

v (U En> = Z v(E,) and v(@) =0

neN neN
A

Definition. Let (X,01) be a measurable space and v a complex or signed
measure. A measurable set E is said to be v-null if whenever ' C FE it
follows that v(F) = 0. A

Definition. Let (X,9) be a measurable space and v a signed measure. A
measurable set F is said to be v-positive if whenever F' C FE it follows that
v(F') > 0. A measurable set E is said to be v-negative if whenever F' C E
it follows that v(F') < 0. A

Definition. Let (X,901) be a measurable space. Two measures u, A are
mutually singular, denoted by pu L A, if there is a measurable set A such
that pu(A) =0 = A(X \ A). If the measures are instead complex or signed
measures, we require A to be p-null and X \ A is A-null. A

Definition. Let (X,91) be a measurable space. A measure p is absolutely
continuous with respect to another measure \, denoted by p < A, if
whenever A\(E) = 0 it follows that p(E) = 0. If the measures are instead
complex or signed measures, we require that A-null implies p-null. A

Proposition. Let (X,9N) be a measurable space and let u, A be finite mea-
sures. Then p << X if and only if for every € > 0 there is § > 0 such that if
AE) <9, then u(E) < e.

Theorem. (Hahn Decomposition) Let (X,9M) be a measurable space. If u
1 a signed measure, then there exist measurable sets P and N such that P
is p-positive, N is p-negative and X = P U N. The pair (P,N) is called
a Hahn decomposition of X. Furthermore, a pair (Py, No) is a Hahn
decomposition of X if and only if P /N Py and N /N Ny are p-null.

Theorem. (Jordan Decomposition) Let (X,9) be a measurable space. If p
15 a signed measure, then there exist measures py, p— such that p = pp —p—
and py L p—. Moreover, If p = A1 — Aa, then py < A1 and p— < Ao, and if
also A1 L Ao, then puy = A1 and p_ = Ag.

Theorem. (Radon-Nikodym) Let (X,9) be a measurable space, p a o-
finite measure and v a complex measure such that v < p. Then, there exists



f:X — C such that f € L'(u) and

V(E)=/Ef du

The function f is called a Radon-Nikodym derivative of v with respect
to p, f is unique a.e [p] and it’s denoted as

Theorem. (Lebesgue Decomposition) Let (X,9N) be a measurable space, 1 a
o-finite measure and v a complex measure. Then, there exist unique complex
measures Vs and v, such that v =vs + vy, vs L p and v, < p.

Proposition. Let (X,9M) be a measurable space. We denote by M(X,N)
to the set of all complex measures on (X,0M). For p € M(X,9M) and E € M
let

oo
|u|(E) := sup {Z |(En)| : {En}neny C M is a pairwise disjoint cover of E}
n=1

Then, |p| is a finite measure and M(X,9N) is a Banach space with norm
gwen by |[ull = [p[(X).

Theorem. Let (X,0MM) be a measurable space and p € M(X,9). Then
there is a function h : X — C such that |h| =1 a.e [|u|] and

n(m) = [ ndie

Definition. Let X be a topological space and u € M(X,0). We say that
p is regular if |p| is regular. A

Theorem. (Riesz Representation Theorems) Let X be a locally compact
Hausdorff space.

(a) Ifw € Cy(X)*, then there exist a unique reqular measure p € M(X,Bx)
such that

a%f)——/ij"du and Jwl| = ]

(b) Ifwe Co(X)* is positive (i.e. w(f) > 0 whenever f > 0), then there
exist a unique regular positive measure p such that

wﬁ:Afw

10



2 Winter 2017: Math 617

2.1 Theorems and Definitions.
2.1.1 Fubini’s Theorem
Definition. Let (X,9) and (Y,9) be measurable spaces. A measurable

rectangle is a set of the form F x F where E € 9t and F € M. A

Definition. Let (X,9, 1) and (Y,N,v) be o-finite measure spaces. Then,
we denote by M ®N to the o-algebra on X XY geberated by the measurable
rectangles. A

Theorem. Let (X, M, u) and (Y, N,v) be o-finite measure spaces. Then,
there exist a unique measure it @ v on M QN such that

(@ V)(E x F) = p(E)v(F) ¥ (E € M, F eN).

Theorem. (Tonelli [Fubini]) Let (X, 9, u) and (Y, N, v) be o-finite measure
spaces, f: X xY — C a M N-measurable function. Suppose that f is
non-negative [f is pu @ v-integrable]. Then,

(a) For ally € Y, v — f(x,y) is M-measurable [u-integrable for a.e.
yeyY]

(b) The function
v [ ) dute)
X

is defined a.e [V] and it’s N-measurable [v-integrable].

/Y</X f(z,y) du(:c)) dv(y) = /nyf d(u @ v)

Furthermore, items (a), (b) and (c) above also hold when interchanging
yeox, Y < X, Mo N and p < v.

(c)

2.1.2 Differentiation

Definition. Let d € N and let u be a regular Borel measure on R%. For
r >0 and 2 € R?, we define

_ MB
(= (B, ()

11



where m is the Lebesgue measure in R?. For z € R set

Dy(a) = lim (Qup)(x)

r—0t

A

Definition. Let d € N and let u be a complex regular Borel measure on
R?. For z € R? we put

My(z) := sup(Qr|pl)(x)

r>0

A

Lemma. Let d € N and let i be a complex reqular Borel measure on RY.
The function M,, is lower semicontinuous, that is M;l( (t,00) ) is open for
every t € R.

Definition. Let d € N. A locally integrable functions is a Lebesgue
measurable function f : R? — C such that [, |f| dm < oo for all com-
pact subsets K C R?. We denote the set of locally integrable functions by
L%OC(Rd)' A

Definition. For f € Ll (R?) and x € R?, define

loc

1
Mf(w)=sup im0 /Bm) 7] dm

A

Definition. Let d € N and f € L}OC(Rd). A point g € R* is a Lebesgue
point of f if
1

o, m(B,(z)) /Br(x) £ = feo)] dm =0

A

Theorem. Letd € N and f € Llloc(]Rd). Then, the complement of the set of
Lebesgue points of f has measure 0. That is, a.e. [m] x € R is a Lebesgue
point.

Theorem. Let d € N and let i be a complex regular Borel measure on R?
such that p < m. If f = 5—7’; a.e. [m], it follows that f(x) = D, () for all
Lebesgue points of f.

12



Definition. Let d € N and z € R%. We say that a sequence of subsets of
RY, (E,)nen, shrinks nicely to x is there is a sequence (r,,)nen in (0, 00)
and a > 0 such that

(1) r, >0
(2) E, C B, (2)

(3) m(En) = am(By, (x))

A

Theorem. Ifd € N, f € L. (R?), z € R? is a Lebesque point of f and

loc
(En)nen shrinks nicely to x, then

A

ffm=f(z)
En

Definition. A function f : [a,b] — Cis absolutely continuous if for every
e > 0, there is § > 0 such that if (a1,b1),..., (ayn,b,) are disjoint intervals
in [a,b] and > }_, (b — ag) < 4, it follows that > 7| |f(bk) — f(ar)| <e. A

Theorem. If f : [a,b] — C is absolutely continuous, it’s derivative f’ exist
a.e [m], ' € LY([a,b],m) and

f@) = 5@+ [ f dm

Theorem. Suppose that f : [a,b] — R is non decreasing. The following are
equivalent.

(i) f is absolutely continuous.
(ii) If m(E) =0, then m(f(E)) = 0.

(iii) f' exist a.e [m], f' € L*([a,b],m) and

f@) = $@)+ [ 1 dm

13



2.1.3 Basic Functional Analysis

Theorem. (Hahn-Banach) Let K = C or R. Let E be a normed vector
space over K and let M be a subspace of E. If wg : M — K is a bounded
linear functional, there exist a linear functional w : E — K such that

(i) wln = wo

(i) [Jwll = llwoll

Corollary 1. If E is a normed vector space and & € E \ {0}, then there
erist w: B — C such that

(i) w(éo) = |60l
(i) |lw| =1

Corollary II. If E is a normed vector space and ® : E — E** is given by
[@(8)](w) :==w(&) forallé € E andw € E* |

then ® is an injective isometry. We may, and do, identify E as a subset of
E**,

Theorem. (Baire Category Theorem) Let X be a complete metric space.
Let Uy, U, ..., be open dense subsets of X. Then,

ﬂ U, is densein X

n=1

Theorem. (Uniform Boundedness Principle) Let E be a Banach space, F
a normed vector space and S C L(E,F). Assume there is a dense Gy set
B C E (i.e. B is a countable intersection of open sets) such that for any
§e€ B,

sup [|a(§)]| < oo
a€esS

Then,

sup [lal| < o0
aesS

Theorem. (Open Mapping Theorem) Let E, F be Banach spaces and a €
L(E,F) surjective. Then,

(i) There is § > 0 such that BE'(0) C a(BF(0)).

14



(i) If U C E is open, then a(U) is open.
(iii) If a is also injective, then a=! € L(F, E).

Theorem. (Closed Graph) If a : E — F is linear, then a is bounded if and
only if the graph of a is a closed subset of E x F.

2.1.4 Hilbert Spaces

Definition. Let H be a vector space over C. A scalar product on H is a
function (&,n) — (£, n) from H x H — C such that

(1) It’s linear in & for each fixed 7.
(2) &n) =6
(3) (£,€) 2 0.
(4) If (£,€) =0, then £ = 0.
A
Theorem. (Cauchy-Schwarz)
&P < (& ) mm)
Remark. A scalar product on H induces a norm in H by letting [|£]| :=
((€,€)'/?, so Cauchy-Schwarz gives [(€,n)| < [|¢]/]|n]l. v

Definition. If H is equipped with a scalar product, we say that H is a
Hilbert space if it is complete with respect to the induced norm. A

Theorem. (Parallelogram Law) In any scalar product space we have
1€ +nll* + 1€ = nll* = 2(€lI> + [In]1*)

Definition. Let H be a scalar product space. We say that £,n € H are
orthogonal, denoted by £ L n, if (£,n) = 0. For S,T C H, we say that S
is orthogonal to T, denoted by S L T, if ¢ L nforall{ € Sand allnp e T.
Further, we put

L={peH:nLle VeEeS)

15



Theorem. If H is a Hilbert space and S C H, then ST is a closed subset
of H.

Theorem. If H is a Hilbert space and K is a closed convex subset of H,
then there is a unique & € K such that

dist(0, K) = [|€ol|

Theorem. Let H be is a Hilbert space and M C H a closed subspace. Then,
for every &€ € H there are unique p(&) € M and q(€) € M+ such that

(1) € =p(§) +q(§).

(2)p:H = M, q:H — M are linear with ||p|,|lq| < 1 and p* = p,
2
qa =4q.

(3) 1117 = PN + la()I?

(4) p(€) is the nearest point in M to &, q(€) is the nearest point in M~ to
3

Corollary. Let H be is a Hilbert space and M C H a closed subspace. Then,
H=MeoM*

Theorem. (Riesz) Let H be is a Hilbert space and w € H*. Then, there is
a unique 1 € H such that

wl@)=(EmVEeH
Moreover, ||w| = |n].

Theorem. Let H be is a Hilbert space and a € L(H). Then there is a
unique a* € L(H) such that

(ag;m) = (&a"n) VEneH
Furthermore, for any a,b € L(H) and A € C
(1) lla*[l = llall.
(2) (a+ \b)* = a* + \b*.
(3) (ab)* =b*a*.

16



(4) id* = id.

(5) (a*)" = a.

(6) lla*all = |lal*.

Definition. Let H be is a Hilbert space. A family (&;);er of elements in
H is: orthogonal if § L &; for all @« # j in I; orthonormal if in also

|xi;|]| = 1 for all i € I; and a Hilbert basis if in addition span({&; : ¢ € I})
is dense in H. A

Definition. Let H be is a Hilbert space and (&;);cr a family of elements in
H. We say that

Y G—ten
el
if for all € > 0 there is a finite set F' C I, such that for every finite set S C I

with F' C S, we have
€S

Theorem. Let H be any Hilbert space.

(a) H has an orthonormal basis.
(b) Any other orthonormal basis of H has the same cardinality.

(¢c) For an orthonormal basis (&;)icr, the map €2(I) — H given by
(wiier = Y i
i€l
s an tsometric isomorphisim with inverse given by
= (€ &))ier

Theorem. Let H be is a Hilbert space and (§;)icr a family of elements in
H such that span({&; : i € I}) = M. Then,

(a) For all £ € H,
dolE &P < gl

el
(b) The orthogonal projection p: H — M 1is
pE=> (£8)&

iel

17



2.1.5 Basic Fourier Analysis

Definition. For f,g € L'(R,m) we define the convolution f * g by

(f*9)(x) = /R )yl — ) dm(y)

Theorem. If f,g € L'(R,m) are Lebesque measurable, then

(a) (z,y) — f(y)g(x —y) is Lebesgue measurable
(b) y— f(y)g(x —y) is integrable for a.e.
(¢) [If = gllv < £l llglh

Definition. Put m = (2r)~1/?m, and let f € L'(R,m). We define the
Fourier Transform of f, denoted by f, by

fity = [ e fta) dmta)
A
Pr(;Lposition. (Properties of f) For f € LY(R,m), a € R and 8 € (0,00)
(a) If g(x) = € f(x), then G(t) = f(t - a)
(b) If g(x) = f(x — o), then G(t) = e~ (1)
(c) If g € L'(R,m), then (fxg) = [ -3
(d) If g(x) = T(~x). then G(t) = (1)
(e) If g(x) = f(B~'x), then §(t) = BF(t)

(f) If g(x) = —izf(x) is such that g is in L'(R,m), then (f)’ exists and is
equal to g.

Theorem. The map f ]? is_a contractive linear map from L'(R,m) to
Co(R); that is f € Co(R) and || flloo < |If]l1-

18



Theorem. (Fourier Inversion) Suppose that f € L'(R,m) and that f €
LY(R,m). If

ola) = [ e fie) amo)
then g € Co(R) and g = f a.e.
Corollary. If f € LY(R,m) and f =0, then f =0 a.e.
Theorem. (Plancherel) There is a mapping F : L*(R,m) — L*(R,m) such
that
(1) F(f) = f for all f € LY(R,m) N L2(R,m).
(2) 1F(F)ll2 = I fll2 for il f € L(R, )
(3) F is a Hilbert space isomorphism of L*(R,m) onto itself.

(4) 1f

oalt) = / ¢~ f(z) dm(z) and pa(z) == / S F(f)(t) dmit),
—_A —A
Then

Jm flps— F(F)=0 and Jim [a— flo=0

Corollary. If f € L?>(R,m) and F(f) € L'(R,m), then

f(x) = /R e F(f)(t) dm(t) a.e

Remark. L'(R,m) is a Banach algebra with multiplication given by con-
volution. v

Theorem. To every non-zero complex homomorphism w : L'(R,m) — C
(i.e. Banach algebra homomorphism) corresponds a unique t € R such that

~

w(f) = f(t) for all f € L'(R,m)

19



3 Spring 2017: Math 618

3.1 Theorems and Definitions.
3.1.1 Basic Complex Analysis

Definition. For Q an open subset of C, a € €0, we say that f: Q2 — C is
complex differentiable at a is the following limit exits

o FE) =S L fa+h) — f@)

z—a zZ—a h—0 h

In such case, the limit is denoted by f’(a). Equivalently, if f := u + iv,
z = x+1y, then f is complex differentiable at a := xg + iy if u and v satisfy
the Cauchy Riemann equations:

ou ov ou ov
%(1‘07%) = @(x07y0) and @(foayo) = —£($0,y0)

Furthermore,

0 0
f(a) = ETZ(J:O’ Yo) + Zafi(ﬂfo, o)

Lemma. If f'(a) exists, then f is continuous at a.

Definition. Let 0 C C open and f : Q@ — C. We say that f is repre-
sentable by power series on () if for all a € Q and for all » > 0 with
By (a) C Q, there is a sequence (¢p)nen, in C such that

f(z2) = ealz—a)"V z € By(a)

n=0
A

Definition. Let Q C C open and f : Q) — C. We say that f is weakly
representable by power series on () if for all zg € Q, there is a € €2 such
that f is given by a power series about a on some neighborhood of zg. A

Theorem. For a sequence (cn)nen, in C, we define R € [0, 00] by
1
— = limsup |¢, /"
7 = lmsup|cy|

Then,
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(a) If |z —a|l > R, then c,(z —a)" /4 0 as n — oo.

(b) For all s € (0, R), for all a € C, the series Y, ., cn(z —a)" converges

uniformly and absolutely on Bg(a)

Theorem. Let 2 C C open . If f:Q — C is representable by power series
on Q, then f is complex differentiable on Q and f' is also representable by
power series on §2. Further,

if f(z) = i cn(z —a)", then f'(2) = incn(z —a)" !
n=0 n=1

Corollary. If f(z) = Z cn(z —a)”, then f%)(a) = kle for all n € No.
n=0

Lemma. Let (X, p) be a complex measure space, Q2 C C open, and ¢ : X —
C measurable with o(X)NQ = &. Then,

1
f(z) = /Xgo(:z)—zd’u(x)

is representable by power series on  with coefficients around a € Q given

by
1

= J G

Definition. Let 7 : [o, 8] — C be a C! curve and f a complex valued
function defined on Ran(y). We define the line integral of f along ~ by

B
/ £(0) d¢ = / FOv() A (8) dt
¥ a

A

Definition. Let v : [a, 3] — C be a piecewise C! closed curve, and let
Q := C\ Ran(v). The winding number of v around z €  is defined by

Indy(2) := / R i Zd(
g

A

Theorem. Let 7 : [a, 3] — C be a piecewise C' closed curve, and let Q :=
C\ Ran(y). The function Indy : Q@ — Z is continuous and vanishes on the
unbounded component of §2.
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Theorem. Let Q C C open, f holomorphic on Q and v : [o, 5] — C be a
piecewise C' closed curve such that Indy =0 on C\ Q. Then,

(a) (Cauchy’s Theorem,)
JRGES
g

(b) (Cauchy’s Formula) If a € Q '\ Ran(7)

Ind, (2)f(a) = — / 1) 4

T omi (—a
Theorem. Let Q C C be a region (i.e. open and connected), f holomorphic
on Q, and Z(f) :={z € Q: f(z) =0}. Then,
(a) Z(f)=Q or Z(f) has no limit point in 2

(b) If Z(f) has no limit point in Q, then Z(f) is at most countable and for
all a € Z(f) there is a unique n € N and a holomorphic function g on

Q with g(a) # 0, such that
f(z) =(z—a)"g(2) V z € Q
The number n is known as the order of the zero a.
Corollary. Let Q C C be a region, f,g holomorphic on Q0 and A C Q with

limit points in w. If fla = gla, then f =g.

Definition. If Q C C is open and f : Q\ {a} — C holomorphic, we say
that f has a singularity at a. Further,

(1) a is removable if there is a holomorphic function g on Q such that
gloviey = f-

(2) ais a pole if thereisn € N, ¢y, ..., ¢, € C, with ¢, # 0 and a holomor-
phic function g on €2, such that

f<z>:2(c—zk+g<z> vz e\ {a}

= (z— a)

The number n is known as the order of the pole a.
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(3) ais an essential singularity if for all » > 0

F((Br(a) N 2) \{a})

is dense in C.

A
Theorem. (Cauchy Estimates) Let a € C, r > 0. If f is holomorphic on
By(a) and |f(2)| < M for all z € B.(a), then
M
F" @) < 5= v eN

Theorem. (Liouville’s Theorem) Any bounded entire function is constant.

Theorem. (Mazimum Modulus) Let Q C C be a region, f holomorphic on
Q and By(a) C Q for some a € Q, r > 0.Then

f(a)] < sup |f(a+re?)]

Equality occurs if and only if f is constant in §2.

Corollary. Let Q C C be a region. If f is holomorphic on  and |f| has a
local mazimum on 2, then f is constant.

Theorem. (Open Mapping) Let Q C C be open, f holomorphic on Q2 and
a € Q such that f(a) # 0. Then, there is an open neighborhood V. C Q of a
such that

(a) flv is injective.

(b) W:= f(V) is open.

(c) (flv)~': W — V is holomorphic.

Corollary I. Let Q C C be open, f holomorphic on Q. If f is non constant,
then f is an open map.

Corollary II. Let Q C C be open, f holomorphic on Q. If f is injective,
then f(Q) is open, f~' is holomorphic and f'(z) # 0 for all z € Q.

Theorem. (Morera) Let 2 C C be open and f : Q — C continuous. Suppose
that for every closed triangle A C Q0 we have

f(¢) d¢ =0

OA
Then, f is holomorphic on Q.
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Definition. Let Q2 C C be open. A complex valued function f is said to be
meromorphic [a function with isolated singularities] on € if there
is a subset A C € with no limit points in €2 such that f is holomorphic on
2\ A and at each a € A f as a pole [a pole or an essential singularity]. If
a € A, we set

Res(f,a) : /f dg,

where v(t) := a +re' for t € [0,27] and r > 0 is such that B,(a) N A = {a}
and By(a) C €. One checks that Res(f,a) is independent of the r chosen.
A

Theorem. (Residue) Let @ C C be open and f a meromophic (or a a
function with isolated singularities) with set of singularities given by A. If
I is a cycle in Q\ A such that Indr(z) =0 for all z € C\ A, then

2m/f d¢ = Zlndp JRes(f,a)

acA
Theorem. Let 2 C C be open and I is a cycle in ) such that
(1) Indr(z) =0 for all z € C\ Q
(2) Indr(z) € {0,1} for z € 2\ Ran(T).

Let U := {z : Indr = 1} and f a holomorphic function on § that is not zero
on any unbounded component and with no zeros in Ran(I"). Define

Ny := #number of zeros of f (counting multiplicity) in U

Then,

(a) (Argument Principle)

1 1©
T 2 i F(O)

dg

(b) (Rouché) If g is holomorphic on Q and |f(2) —g(2)| < |f(2)| on Ran(T),
then Ny = Ny.

24



	 Fall 2016: Math 616 
	 Theorems and Definitions. 
	Basic Measure Theory
	Lebesgue Measure
	Lp spaces
	Complex and Signed measures


	 Winter 2017: Math 617 
	 Theorems and Definitions. 
	Fubini's Theorem
	Differentiation
	Basic Functional Analysis
	Hilbert Spaces
	Basic Fourier Analysis


	 Spring 2017: Math 618 
	 Theorems and Definitions. 
	Basic Complex Analysis



