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1 Fall 2016: Math 616

1.1 Theorems and Definitions.

1.1.1 Basic Measure Theory

Definition. Let X be a set. A toplogy on X is a set T ⊆ P(X) such that

(1) ∅, X ∈ T .

(2) If U, V ∈ T , then U ∩ V ∈ T .

(3) If {Uα}α∈I ⊆ T , then
⋃
α∈I Uα ∈ T .

Elements of T are called open sets. N

Definition. Let X be a set. A σ-algebra on X is a set M ⊆ P(X) such
that

(1) ∅, X ∈M.

(2) If E ∈M, then X \ E ∈M.

(3) If {En}n∈N ⊆M, then
⋃
n∈NEn ∈M.

Elements of M are called measurable sets. N

Definition. Let X be a set and M a σ-algebra on X. The pair (X,M) is
called a measurable space . A measure on (X,M) is a function µ : M →
[0,∞] such that

(1) µ(∅) = 0.

(2) If E1, E2, . . . are pairwise disjoint elements of M, then

µ

(⋃
n∈N

En

)
=
∑
n∈N

µ(En).

The triple (X,M, µ) is called a measure space . If µ(X) <∞, the measure
µ is said to be finite ; and if there is a partition {Xn}n∈N of X such that
µ(Xn) <∞ for all n ∈ N, the measure µ is said to be σ-finite . N
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Proposition. (Properties of measures) Let (X,M, µ) be a measure space,
E,F ∈ M such that E ⊆ F , {En}n∈N ⊂ M such that En ⊆ En+1, and
{Fn}n∈N ⊂M such that Fn ⊇ Fn+1 and µ(F1) <∞. Then,

(a) µ(E) ≤ µ(F ).

(b) If µ(E) <∞, then µ(F \ E) = µ(F )− µ(E).

(c)

µ

(⋃
n∈N

En

)
= lim

n→∞
µ(En) and µ

(⋂
n∈N

Fn

)
= lim

n→∞
µ(Fn)

Definition. Let (X,M) and (Y,N) be measurable spaces. A function
h : X → Y is said to be measurable if for all F ∈ N it follows that
h−1(F ) ∈ M. If (Y, T ) is instead a toplogical space, we only ask that
h−1(V ) ∈M for any V ∈ T . (In fact, any toplogical space is a measurable
one with the sigma algebra being the smallest one containing all open sets)
N

Definition. Let (X,M) be a measurable space. A simple function
s : X → C is a function such that there exist α1, α2, . . . , αn ∈ C and
E1, E2, . . . En ∈M such that X =

⊔n
k=1Ek and

s =
n∑
k=1

αkχEk

Furthermore, if µ is a measure on (X,M), we define the integral of s over
X with respect to µ as follows∫

X
s dµ :=

n∑
k=1

αkµ(Ek)

N

Lemma. Let (X,M) be a measurable space. If f : X → [0,∞] is measurable
, there is a sequence (sn)∞n=1 of non-negative simple functions such that
sn → f pointwise and sn ≤ sn+1 for all n ∈ N.

Definition. Let (X,M, µ) be a measure space and f : X → [0,∞] a
non-negative measurable function. Denote by S+(X,M) the set of all non-
negative simple functions. We define the integral of f over X with
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respect to µ as follows∫
X
f dµ := sup

{∫
X
s dµ : s ∈ S+(X,M), s ≤ f

}
N

Theorem. (Monotone Convergence Theorem) Let (X,M, µ) be a measure
space and (fn)n∈N be a sequence of measurable non-negative functions such
that

(i) fn ≤ fn+1 for all n ∈ N

(ii) f(x) := lim
n→∞

fn(x) for all x ∈ X

Then, f is measurable and∫
X
f dµ = lim

n→∞

∫
X
fn dµ

Theorem. (Fatou’s Lemma) Let (X,M, µ) be a measure space and (fn)n∈N
be a sequence of measurable non-negative functions. Then,∫

X
lim inf
n→ ∞

fn dµ ≤ lim inf
n→ ∞

∫
X
fn dµ

Notation. Let X be a set. For a function g : X → [−∞,∞] we define
functions g+, g− : X → [0,∞] by

g+(x) := max{g(x), 0} and g−(x) := max{−g(x), 0}

Observe that g = g+ − g−. For a function h : X → C we denote by
Reh, Imh : X → R the real and imaginary parts of h respectively. Observe
that h = Reh+ iImh. H

Definition. Let (X,M, µ) be a measure space and let R be either [−∞,∞]
or C. If f : X → R is measurable, we define the integral of f over X
with respect to µ as follows∫
X
f dµ :=

∫
X

(Ref)+ dµ−
∫
X

(Ref)− dµ+i

(∫
X

(Imf)+ dµ−
∫
X

(Imf)− dµ

)
Further, we say that f is integrable with respect to µ if∫

X
|f | dµ <∞

N
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Theorem. (Lebesgue Dominated Convergence Theorem) Let (X,M, µ) be a
measure space and (fn)n∈N be a sequence of measurable functions fn : X →
C such that

(i) f(x) := lim
n→∞

fn(x) exists for all x ∈ X

(ii) There is an integrable function g : X → [0,∞) such that |f | ≤ g.

Then, each fn and f are integrable. Moreover,∫
X
f dµ = lim

n→∞

∫
X
fn dµ

1.1.2 Lebesgue Measure

Definition. Let X be a set. A function µ∗ : P(X) → [0,∞] is an outer
measure if

(1) µ∗(∅) = 0.

(2) If A ⊆ B ⊆ X, then µ∗(A) ≤ µ∗(B).

(3) If A1, A2, . . . ⊆ X, then

µ∗

(⋃
n∈N

An

)
≤
∑
n∈N

µ∗(An)

Furthermore, we say that E ∈ P(X) is µ∗-measurable if for any A ⊆ X
we have

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ (X \ E))

N

Remark. Intuitively, since A∩E and A∩ (X \E) are disjoint, we note that
µ∗-measurable sets are those that “break” any subset of X as expected with
respect to µ∗. H

Theorem. (Carathéodory construction) Let X be a set and µ∗ an outer
measure. The µ∗-measurable sets form a σ-algebra on X.
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Definition. Let d ∈ N. An open box in Rd is a subset of the form

B := (a1, b1)× (a2, b2)× · · · × (ad, bd)

where for each 1 ≤ k ≤ d we have that ak ≤ bk. We define its volume by

vol(B) :=

d∏
k=1

(bk − ak)

N

Definition. Let d ∈ N. For any A ⊆ Rd we denote by B(A) to the set of
all countable covers of A by open boxes and we define m∗d : P(Rd)→ [0,∞]
by

m∗d(A) := inf

{ ∞∑
n=1

vol(Bn) : {Bn}n∈N ∈ B(A)

}
N

Theorem. The function m∗d : P(Rd)→ [0,∞] is an outer measure.

Definition. The Lebesgue measurable sets on Rd, denoted by Ld are
those m∗d-measurable sets and the Lebesgue measure on Rd, denoted by
md, is the restriction of m∗d to Ld. N

Definition. If (X, T ) is a toplogical space, the σ-algebra BX generated by
all the open sets of X is called the Borel σ-algebra of X and its elements
are called Borel sets. If M is another σ-algebra on X and µ a measure on
(X,M), we say that µ is a Borel measure if BX ⊆M. N

Theorem. Let d ∈ N. Then BRd ⊂ Ld and therefore md is a Borel measure.

Definition. Let (X, T ) be a toplogical space. We say that X is locally
compact if every point of X has an open neighborhood whose closure is
compact. N

Definition. Let (X, T ) be a locally compact Hausdorff space. A Borel
measure µ is said to be regular if

(1) µ(K) <∞ for all K ⊂ X compact.

(2) µ(E) = inf{µ(U) : U ∈ T , E ⊆ U} for all E ∈ BX

(3) If E ∈ BX with µ(E) <∞ or if E ∈ T , then
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(3.1) µ(E) = sup{µ(K) : K is compact ,K ⊆ E}
(3.2) µ(E) = sup{µ(C) : X \ C ∈ T , C ⊆ E}

Condition (2) is known as outer regular , (3.1) as strong inner regular
and (3.2) as weak inner regular . N

Theorem. Lebesgue measure md is regular.

Definition. Let X be a locally compact Hausdorff space. The set of con-
tinuous functions that vanish at infinity is defined as follows

C0(X) := {f ∈ C(X) : ∀ ε > 0 , {x ∈ X : |f(x)| ≥ ε} is compact }

The set of continuous functions with compact support is

Cc(X) := {f ∈ C(X) : supp(f) is compact }

N

Theorem. Let X be a locally compact Hausdorff space and equip C(X)
with the sup norm. Then, C0(X) is closed in C(X) and Cc(X) is dense in
C0(X).

Theorem. (Lusin) Let X be a locally compact Hausdorff space and µ a
regular Borel measure. If f : X → C is measurable and A ⊂ X is such that

(i) µ(A) <∞

(ii) f(x) = 0 for all x 6∈ A

Then, for all ε > 0 there is g ∈ Cc(X) such that

(a) µ({x ∈ X : f(x) 6= g(x)}) < ε

(b) sup
x∈X
|g(x)| ≤ sup

x∈X
|f(x)|

1.1.3 Lp spaces

Definition. Let (X,M, µ) be a measure space and p ∈ [1,∞). The space
of p-integrable functions with respect to µ is

Lp(X,M, µ) :=
{measurable functions f : X → C : |f |p is integrable}
{measurable functions f : X → C : f = 0 a.e [µ]}

N
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Theorem. Let (X,M, µ) be a measure space and p ∈ [1,∞). Put

‖[f ]‖p :=

(∫
X
|f |p

)1/p

Then, ‖ · ‖p : Lp(X,M, µ)→ [0,∞) is a well defined norm (so from now on
we write ‖f‖p := ‖[f ]‖p) and Lp(X,M, µ) is complete with respect to this
norm.

Theorem. (Hölder) Let (X,M, µ) be a measure space and p, q ∈ (1,∞)
such that 1

p + 1
q = 1. If f ∈ Lp(X,M, µ) and g ∈ Lq(X,M, µ), then fg ∈

L1(X,M, µ) and
‖fg‖1 ≤ ‖f‖p‖g‖q

Definition. Let (X,M, µ) be a measure space. A measurable function
f : X → C is said to be essentially bounded with respect to µ if

‖f‖∞ := inf{α > 0 : µ({x ∈ X : |f(x)| > α}) = 0} <∞

The space of essentially bounded functions is denoted by L∞(X,M, µ). N

Theorem. Let (X,M, µ) be a measure space. Then, ‖ · ‖∞ is a well defined
norm and L∞(X,M, µ) is complete with respect to this norm.

Theorem. Let (X,M, µ) be a measure space. If f ∈ L1(X,M, µ) and g ∈
L∞(X,M, µ), then fg ∈ L1(X,M, µ) and

‖fg‖1 ≤ ‖f‖p‖g‖∞

1.1.4 Complex and Signed measures

Definition. Let (X,M) be a measurable space. A function ν : M → C is
a complex measure if whenever E1, E2, . . . are pairwise disjoint elements
in M, it follows that

ν

(⋃
n∈N

En

)
=
∑
n∈N

ν(En).

As consequence of this definition we see that ν(∅) = 0 and that µ may not
assume infinite values. N
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Definition. Let (X,M) be a measurable space. A function ν : M →
(−∞,∞] (or→ [−∞,∞)), is a signed measure if whenever E1, E2, . . . are
pairwise disjoint elements in M, it follows that

ν

(⋃
n∈N

En

)
=
∑
n∈N

ν(En) and ν(∅) = 0

N

Definition. Let (X,M) be a measurable space and ν a complex or signed
measure. A measurable set E is said to be ν-null if whenever F ⊆ E it
follows that ν(F ) = 0. N

Definition. Let (X,M) be a measurable space and ν a signed measure. A
measurable set E is said to be ν-positive if whenever F ⊆ E it follows that
ν(F ) ≥ 0. A measurable set E is said to be ν-negative if whenever F ⊆ E
it follows that ν(F ) ≤ 0. N

Definition. Let (X,M) be a measurable space. Two measures µ, λ are
mutually singular , denoted by µ ⊥ λ, if there is a measurable set A such
that µ(A) = 0 = λ(X \ A). If the measures are instead complex or signed
measures, we require A to be µ-null and X \A is λ-null. N

Definition. Let (X,M) be a measurable space. A measure µ is absolutely
continuous with respect to another measure λ, denoted by µ � λ, if
whenever λ(E) = 0 it follows that µ(E) = 0. If the measures are instead
complex or signed measures, we require that λ-null implies µ-null. N

Proposition. Let (X,M) be a measurable space and let µ, λ be finite mea-
sures. Then µ� λ if and only if for every ε > 0 there is δ > 0 such that if
λ(E) < δ, then µ(E) < ε.

Theorem. (Hahn Decomposition) Let (X,M) be a measurable space. If µ
is a signed measure, then there exist measurable sets P and N such that P
is µ-positive, N is µ-negative and X = P t N . The pair (P,N) is called
a Hahn decomposition of X. Furthermore, a pair (P0, N0) is a Hahn
decomposition of X if and only if P 4 P0 and N 4N0 are µ-null.

Theorem. (Jordan Decomposition) Let (X,M) be a measurable space. If µ
is a signed measure, then there exist measures µ+, µ− such that µ = µ+−µ−
and µ+ ⊥ µ−. Moreover, If µ = λ1− λ2, then µ+ ≤ λ1 and µ− ≤ λ2, and if
also λ1 ⊥ λ2, then µ+ = λ1 and µ− = λ2.

Theorem. (Radon-Nikodym) Let (X,M) be a measurable space, µ a σ-
finite measure and ν a complex measure such that ν � µ. Then, there exists
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f : X → C such that f ∈ L1(µ) and

ν(E) =

∫
E
f dµ

The function f is called a Radon-Nikodym derivative of ν with respect
to µ, f is unique a.e [µ] and it’s denoted as

f =
dν

dµ

Theorem. (Lebesgue Decomposition) Let (X,M) be a measurable space, µ a
σ-finite measure and ν a complex measure. Then, there exist unique complex
measures νs and νa such that ν = νs + νa, νs ⊥ µ and νa � µ.

Proposition. Let (X,M) be a measurable space. We denote by M(X,M)
to the set of all complex measures on (X,M). For µ ∈M(X,M) and E ∈M
let

|µ|(E) := sup

{ ∞∑
n=1

|µ(En)| : {En}n∈N ⊂M is a pairwise disjoint cover of E

}
Then, |µ| is a finite measure and M(X,M) is a Banach space with norm
given by ‖µ‖ := |µ|(X).

Theorem. Let (X,M) be a measurable space and µ ∈ M(X,M). Then
there is a function h : X → C such that |h| = 1 a.e [|µ|] and

µ(E) =

∫
E
h d|µ|

Definition. Let X be a topological space and µ ∈M(X,M). We say that
µ is regular if |µ| is regular. N

Theorem. (Riesz Representation Theorems) Let X be a locally compact
Hausdorff space.

(a) If ω ∈ C0(X)∗, then there exist a unique regular measure µ ∈M(X,BX)
such that

ω(f) =

∫
X
f dµ and ‖ω‖ = ‖µ‖

(b) If ω ∈ Cc(X)∗ is positive (i.e. ω(f) ≥ 0 whenever f ≥ 0), then there
exist a unique regular positive measure µ such that

ω(f) =

∫
X
f dµ
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2 Winter 2017: Math 617

2.1 Theorems and Definitions.

2.1.1 Fubini’s Theorem

Definition. Let (X,M) and (Y,N) be measurable spaces. A measurable
rectangle is a set of the form E × F where E ∈M and F ∈ N. N

Definition. Let (X,M, µ) and (Y,N, ν) be σ-finite measure spaces. Then,
we denote by M⊗N to the σ-algebra on X×Y geberated by the measurable
rectangles. N

Theorem. Let (X,M, µ) and (Y,N, ν) be σ-finite measure spaces. Then,
there exist a unique measure µ⊗ ν on M⊗N such that

(µ⊗ ν)(E × F ) = µ(E)ν(F ) ∀ (E ∈M, F ∈ N).

Theorem. (Tonelli [Fubini]) Let (X,M, µ) and (Y,N, ν) be σ-finite measure
spaces, f : X × Y → C a M ⊗ N-measurable function. Suppose that f is
non-negative [f is µ⊗ ν-integrable]. Then,

(a) For all y ∈ Y , x 7→ f(x, y) is M-measurable [µ-integrable for a.e.
y ∈ Y ].

(b) The function

y 7→
∫
X
f(x, y) dµ(x)

is defined a.e [ν] and it’s N-measurable [ν-integrable].

(c) ∫
Y

(∫
X
f(x, y) dµ(x)

)
dν(y) =

∫
X×Y

f d(µ⊗ ν)

Furthermore, items (a), (b) and (c) above also hold when interchanging
y ↔ x, Y ↔ X, M↔ N and µ↔ ν.

2.1.2 Differentiation

Definition. Let d ∈ N and let µ be a regular Borel measure on Rd. For
r > 0 and x ∈ Rd, we define

(Qrµ)(x) :=
µ(Br(x))

m(Br(x))
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where m is the Lebesgue measure in Rd. For x ∈ Rd set

Dµ(x) := lim
r→0+

(Qrµ)(x)

N

Definition. Let d ∈ N and let µ be a complex regular Borel measure on
Rd. For x ∈ Rd we put

Mµ(x) := sup
r>0

(Qr|µ|)(x)

N

Lemma. Let d ∈ N and let µ be a complex regular Borel measure on Rd.
The function Mµ is lower semicontinuous, that is M−1

µ ( (t,∞) ) is open for
every t ∈ R.

Definition. Let d ∈ N. A locally integrable functions is a Lebesgue
measurable function f : Rd → C such that

∫
K |f | dm < ∞ for all com-

pact subsets K ⊂ Rd. We denote the set of locally integrable functions by
L1

loc(Rd). N

Definition. For f ∈ L1
loc(Rd) and x ∈ Rd, define

Mf(x) := sup
r>0

1

m(Br(x))

∫
Br(x)

|f | dm

N

Definition. Let d ∈ N and f ∈ L1
loc(Rd). A point x0 ∈ Rk is a Lebesgue

point of f if

lim
r→0+

1

m(Br(x))

∫
Br(x)

|f − f(x0)| dm = 0

N

Theorem. Let d ∈ N and f ∈ L1
loc(Rd). Then, the complement of the set of

Lebesgue points of f has measure 0. That is, a.e. [m] x ∈ Rd is a Lebesgue
point.

Theorem. Let d ∈ N and let µ be a complex regular Borel measure on Rd
such that µ � m. If f = dµ

dm a.e. [m], it follows that f(x) = Dµ(x) for all
Lebesgue points of f .
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Definition. Let d ∈ N and x ∈ Rd. We say that a sequence of subsets of
Rd, (En)n∈N, shrinks nicely to x is there is a sequence (rn)n∈N in (0,∞)
and α > 0 such that

(1) rn → 0

(2) En ⊂ Brn(x)

(3) m(En) ≥ αm(Brn(x))

N

Theorem. If d ∈ N, f ∈ L1
loc(Rd), x ∈ Rd is a Lebesgue point of f and

(En)n∈N shrinks nicely to x, then

lim
n→∞

1

m(En)

∫
En

f fm = f(x)

Definition. A function f : [a, b]→ C is absolutely continuous if for every
ε > 0, there is δ > 0 such that if (a1, b1), . . . , (an, bn) are disjoint intervals
in [a, b] and

∑n
k=1(bk − ak) < δ, it follows that

∑n
k=1 |f(bk)− f(ak)| < ε. N

Theorem. If f : [a, b]→ C is absolutely continuous, it’s derivative f ′ exist
a.e [m], f ′ ∈ L1([a, b],m) and

f(x) = f(a) +

∫ x

a
f ′ dm

Theorem. Suppose that f : [a, b]→ R is non decreasing. The following are
equivalent.

(i) f is absolutely continuous.

(ii) If m(E) = 0, then m(f(E)) = 0.

(iii) f ′ exist a.e [m], f ′ ∈ L1([a, b],m) and

f(x) = f(a) +

∫ x

a
f ′ dm
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2.1.3 Basic Functional Analysis

Theorem. (Hahn-Banach) Let K = C or R. Let E be a normed vector
space over K and let M be a subspace of E. If ω0 : M → K is a bounded
linear functional, there exist a linear functional ω : E → K such that

(i) ω|M = ω0

(ii) ‖ω‖ = ‖ω0‖

Corollary I. If E is a normed vector space and ξ0 ∈ E \ {0}, then there
exist ω : E → C such that

(i) ω(ξ0) = ‖ξ0‖

(ii) ‖ω‖ = 1

Corollary II. If E is a normed vector space and Φ : E → E∗∗ is given by

[Φ(ξ)](ω) := ω(ξ) for all ξ ∈ E and ω ∈ E∗ ,

then Φ is an injective isometry. We may, and do, identify E as a subset of
E∗∗.

Theorem. (Baire Category Theorem) Let X be a complete metric space.
Let U1, U2, . . . , be open dense subsets of X. Then,

∞⋂
n=1

Un is dense in X

Theorem. (Uniform Boundedness Principle) Let E be a Banach space, F
a normed vector space and S ⊆ L(E,F ). Assume there is a dense Gδ set
B ⊆ E (i.e. B is a countable intersection of open sets) such that for any
ξ ∈ B,

sup
a∈S
‖a(ξ)‖ <∞

Then,
sup
a∈S
‖a‖ <∞

Theorem. (Open Mapping Theorem) Let E,F be Banach spaces and a ∈
L(E,F ) surjective. Then,

(i) There is δ > 0 such that BF
δ (0) ⊆ a(BE

1 (0)).
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(ii) If U ⊂ E is open, then a(U) is open.

(iii) If a is also injective, then a−1 ∈ L(F,E).

Theorem. (Closed Graph) If a : E → F is linear, then a is bounded if and
only if the graph of a is a closed subset of E × F .

2.1.4 Hilbert Spaces

Definition. Let H be a vector space over C. A scalar product on H is a
function (ξ, η) 7→ 〈ξ, η〉 from H×H → C such that

(1) It’s linear in ξ for each fixed η.

(2) 〈ξ, η〉 = 〈η, ξ〉.

(3) 〈ξ, ξ〉 ≥ 0.

(4) If 〈ξ, ξ〉 = 0, then ξ = 0.

N

Theorem. (Cauchy-Schwarz)

|〈ξ, η〉|2 ≤ 〈ξ, ξ〉〈η, η〉

Remark. A scalar product on H induces a norm in H by letting ‖ξ‖ :=
(〈ξ, ξ〉)1/2, so Cauchy-Schwarz gives |〈ξ, η〉| ≤ ‖ξ‖‖η‖. H

Definition. If H is equipped with a scalar product, we say that H is a
Hilbert space if it is complete with respect to the induced norm. N

Theorem. (Parallelogram Law) In any scalar product space we have

‖ξ + η‖2 + ‖ξ − η‖2 = 2(‖ξ‖2 + ‖η‖2)

Definition. Let H be a scalar product space. We say that ξ, η ∈ H are
orthogonal , denoted by ξ ⊥ η, if 〈ξ, η〉 = 0. For S, T ⊆ H, we say that S
is orthogonal to T , denoted by S ⊥ T , if ξ ⊥ η for all ξ ∈ S and all η ∈ T .
Further, we put

S⊥ := {η ∈ H : η ⊥ ξ, ∀ ξ ∈ S}

N
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Theorem. If H is a Hilbert space and S ⊆ H, then S⊥ is a closed subset
of H.

Theorem. If H is a Hilbert space and K is a closed convex subset of H,
then there is a unique ξ0 ∈ K such that

dist(0,K) = ‖ξ0‖

Theorem. Let H be is a Hilbert space and M ⊆ H a closed subspace. Then,
for every ξ ∈ H there are unique p(ξ) ∈M and q(ξ) ∈M⊥ such that

(1) ξ = p(ξ) + q(ξ).

(2) p : H → M , q : H → M⊥ are linear with ‖p‖, ‖q‖ ≤ 1 and p2 = p,
q2 = q.

(3) ‖ξ‖2 = ‖p(ξ)‖2 + ‖q(ξ)‖2

(4) p(ξ) is the nearest point in M to ξ, q(ξ) is the nearest point in M⊥ to
ξ,

Corollary. Let H be is a Hilbert space and M ⊆ H a closed subspace. Then,

H = M ⊕M⊥

Theorem. (Riesz) Let H be is a Hilbert space and ω ∈ H∗. Then, there is
a unique η ∈ H such that

ω(ξ) = 〈ξ, η〉 ∀ ξ ∈ H

Moreover, ‖ω‖ = ‖η‖.

Theorem. Let H be is a Hilbert space and a ∈ L(H). Then there is a
unique a∗ ∈ L(H) such that

〈aξ, η〉 = 〈ξ, a∗η〉 ∀ ξ, η ∈ H

Furthermore, for any a, b ∈ L(H) and λ ∈ C

(1) ‖a∗‖ = ‖a‖.

(2) (a+ λb)∗ = a∗ + λb∗.

(3) (ab)∗ = b∗a∗.

16



(4) id∗ = id.

(5) (a∗)∗ = a.

(6) ‖a∗a‖ = ‖a‖2.

Definition. Let H be is a Hilbert space. A family (ξi)i∈I of elements in
H is: orthogonal if ξi ⊥ ξj for all i 6= j in I; orthonormal if in also
‖xii‖ = 1 for all i ∈ I; and a Hilbert basis if in addition span({ξi : i ∈ I})
is dense in H. N

Definition. Let H be is a Hilbert space and (ξi)i∈I a family of elements in
H. We say that ∑

i∈I
ξi → ξ ∈ H

if for all ε > 0 there is a finite set F ⊂ I, such that for every finite set S ⊂ I
with F ⊂ S, we have ∥∥∥∑

i∈S
ξi − ξ

∥∥∥ < ε

N

Theorem. Let H be any Hilbert space.

(a) H has an orthonormal basis.

(b) Any other orthonormal basis of H has the same cardinality.

(c) For an orthonormal basis (ξi)i∈I , the map `2(I)→ H given by

(xi)i∈I 7→
∑
i∈I

xiξi

is an isometric isomorphisim with inverse given by

ξ 7→ (〈ξ, ξi〉)i∈I
Theorem. Let H be is a Hilbert space and (ξi)i∈I a family of elements in
H such that span({ξi : i ∈ I}) = M . Then,

(a) For all ξ ∈ H, ∑
i∈I
|〈ξ, ξi〉|2 ≤ ‖ξ‖2

(b) The orthogonal projection p : H →M is

pξ =
∑
i∈I
〈ξ, ξi〉ξi

17



2.1.5 Basic Fourier Analysis

Definition. For f, g ∈ L1(R,m) we define the convolution f ∗ g by

(f ∗ g)(x) :=

∫
R
f(y)g(x− y) dm(y)

N

Theorem. If f, g ∈ L1(R,m) are Lebesgue measurable, then

(a) (x, y) 7→ f(y)g(x− y) is Lebesgue measurable

(b) y 7→ f(y)g(x− y) is integrable for a.e. x

(c) ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1

Definition. Put m := (2π)−1/2m, and let f ∈ L1(R,m). We define the
Fourier Transform of f , denoted by f̂ , by

f̂(t) :=

∫
R
e−itxf(x) dm(x)

N

Proposition. (Properties of f̂) For f ∈ L1(R,m), α ∈ R and β ∈ (0,∞)
we have

(a) If g(x) = eiαxf(x), then ĝ(t) = f̂(t− α)

(b) If g(x) = f(x− α), then ĝ(t) = e−iαtf̂(t)

(c) If g ∈ L1(R,m), then (̂f ∗ g) = f̂ · ĝ

(d) If g(x) = f(−x), then ĝ(t) = f̂(t)

(e) If g(x) = f(β−1x), then ĝ(t) = βf̂(t)

(f) If g(x) = −ixf(x) is such that g is in L1(R,m), then (f̂)′ exists and is
equal to ĝ.

Theorem. The map f 7→ f̂ is a contractive linear map from L1(R,m) to
C0(R); that is f̂ ∈ C0(R) and ‖f̂‖∞ ≤ ‖f‖1.

18



Theorem. (Fourier Inversion) Suppose that f ∈ L1(R,m) and that f̂ ∈
L1(R,m). If

g(x) :=

∫
R
eitxf̂(t) dm(t),

then g ∈ C0(R) and g = f a.e.

Corollary. If f ∈ L1(R,m) and f̂ = 0, then f = 0 a.e.

Theorem. (Plancherel) There is a mapping F : L2(R,m)→ L2(R,m) such
that

(1) F(f) = f̂ for all f ∈ L1(R,m) ∩ L2(R,m).

(2) ‖F(f)‖2 = ‖f‖2 for all f ∈ L2(R,m)

(3) F is a Hilbert space isomorphism of L2(R,m) onto itself.

(4) If

ϕA(t) :=

∫ A

−A
e−itxf(x) dm(x) and ψA(x) :=

∫ A

−A
eitxF(f)(t) dm(t),

Then
lim
A→∞

‖ϕA −F(f)‖2 = 0 and lim
A→∞

‖ψA − f‖2 = 0

Corollary. If f ∈ L2(R,m) and F(f) ∈ L1(R,m), then

f(x) =

∫
R
eitxF(f)(t) dm(t) a.e

Remark. L1(R,m) is a Banach algebra with multiplication given by con-
volution. H

Theorem. To every non-zero complex homomorphism ω : L1(R,m) → C
(i.e. Banach algebra homomorphism) corresponds a unique t ∈ R such that
ω(f) = f̂(t) for all f ∈ L1(R,m)
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3 Spring 2017: Math 618

3.1 Theorems and Definitions.

3.1.1 Basic Complex Analysis

Definition. For Ω an open subset of C, a ∈ Ω, we say that f : Ω → C is
complex differentiable at a is the following limit exits

lim
z→a

f(z)− f(a)

z − a
= lim

h→0

f(a+ h)− f(a)

h

In such case, the limit is denoted by f ′(a). Equivalently, if f := u + iv,
z = x+ iy, then f is complex differentiable at a := x0 + iy0 if u and v satisfy
the Cauchy Riemann equations:

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) and

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0)

Furthermore,

f ′(a) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0)

N

Lemma. If f ′(a) exists, then f is continuous at a.

Definition. Let Ω ⊆ C open and f : Ω → C. We say that f is repre-
sentable by power series on Ω if for all a ∈ Ω and for all r > 0 with
Br(a) ⊆ Ω, there is a sequence (cn)n∈N0 in C such that

f(z) =

∞∑
n=0

cn(z − a)n ∀ z ∈ Br(a)

N

Definition. Let Ω ⊆ C open and f : Ω → C. We say that f is weakly
representable by power series on Ω if for all z0 ∈ Ω, there is a ∈ Ω such
that f is given by a power series about a on some neighborhood of z0. N

Theorem. For a sequence (cn)n∈N0 in C, we define R ∈ [0,∞] by

1

R
:= lim sup

n→∞
|cn|1/n

Then,
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(a) If |z − a| > R, then cn(z − a)n 6→ 0 as n→∞.

(b) For all s ∈ (0, R), for all a ∈ C, the series
∑

n∈N0
cn(z − a)n converges

uniformly and absolutely on Bs(a)

Theorem. Let Ω ⊆ C open . If f : Ω→ C is representable by power series
on Ω, then f is complex differentiable on Ω and f ′ is also representable by
power series on Ω. Further,

if f(z) =
∞∑
n=0

cn(z − a)n, then f ′(z) =
∞∑
n=1

ncn(z − a)n−1.

Corollary. If f(z) =

∞∑
n=0

cn(z − a)n, then f (k)(a) = k!ck for all n ∈ N0.

Lemma. Let (X,µ) be a complex measure space, Ω ⊆ C open, and ϕ : X →
C measurable with ϕ(X) ∩ Ω = ∅. Then,

f(z) :=

∫
X

1

ϕ(x)− z
dµ(x)

is representable by power series on Ω with coefficients around a ∈ Ω given
by

cn =

∫
X

1

(ϕ(x)− a)n+1
dµ(x)

Definition. Let γ : [α, β] → C be a C1 curve and f a complex valued
function defined on Ran(γ). We define the line integral of f along γ by∫

γ
f(ζ) dζ :=

∫ β

α
f(γ(t)) γ′(t) dt

N

Definition. Let γ : [α, β] → C be a piecewise C1 closed curve, and let
Ω := C \Ran(γ). The winding number of γ around z ∈ Ω is defined by

Indγ(z) :=

∫
γ

1

ζ − z
dζ

N

Theorem. Let γ : [α, β] → C be a piecewise C1 closed curve, and let Ω :=
C \ Ran(γ). The function Indγ : Ω → Z is continuous and vanishes on the
unbounded component of Ω.
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Theorem. Let Ω ⊆ C open, f holomorphic on Ω and γ : [α, β] → C be a
piecewise C1 closed curve such that Indγ = 0 on C \ Ω. Then,

(a) (Cauchy’s Theorem) ∫
γ
f(ζ) dζ = 0

(b) (Cauchy’s Formula) If a ∈ Ω \ Ran(γ)

Indγ(z)f(a) =
1

2πi

∫
γ

f(ζ)

ζ − a
dζ

Theorem. Let Ω ⊂ C be a region (i.e. open and connected), f holomorphic
on Ω, and Z(f) := {z ∈ Ω : f(z) = 0}. Then,

(a) Z(f) = Ω or Z(f) has no limit point in Ω

(b) If Z(f) has no limit point in Ω, then Z(f) is at most countable and for
all a ∈ Z(f) there is a unique n ∈ N and a holomorphic function g on
Ω with g(a) 6= 0, such that

f(z) = (z − a)ng(z) ∀ z ∈ Ω

The number n is known as the order of the zero a.

Corollary. Let Ω ⊂ C be a region, f, g holomorphic on Ω and A ⊂ Ω with
limit points in ω. If f |A = g|A, then f = g.

Definition. If Ω ⊆ C is open and f : Ω \ {a} → C holomorphic, we say
that f has a singularity at a. Further,

(1) a is removable if there is a holomorphic function g on Ω such that
g|Ω\{a} = f .

(2) a is a pole if there is n ∈ N, c1, . . . , cn ∈ C, with cn 6= 0 and a holomor-
phic function g on Ω, such that

f(z) =

n∑
k=1

cz
(z − a)k

+ g(z) ∀ z ∈ Ω \ {a}

The number n is known as the order of the pole a.
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(3) a is an essential singularity if for all r > 0

f((Br(a) ∩ Ω) \ {a})

is dense in C.

N

Theorem. (Cauchy Estimates) Let a ∈ C, r > 0. If f is holomorphic on
Br(a) and |f(z)| ≤M for all z ∈ Br(a), then

|f (n)(a)| ≤ n!M

rn
∀n ∈ N

Theorem. (Liouville’s Theorem) Any bounded entire function is constant.

Theorem. (Maximum Modulus) Let Ω ⊂ C be a region, f holomorphic on
Ω and Br(a) ⊂ Ω for some a ∈ Ω, r > 0.Then

|f(a)| ≤ sup
θ
|f(a+ reiθ)|

Equality occurs if and only if f is constant in Ω.

Corollary. Let Ω ⊂ C be a region. If f is holomorphic on Ω and |f | has a
local maximum on Ω, then f is constant.

Theorem. (Open Mapping) Let Ω ⊂ C be open, f holomorphic on Ω and
a ∈ Ω such that f(a) 6= 0. Then, there is an open neighborhood V ⊂ Ω of a
such that

(a) f |V is injective.

(b) W := f(V ) is open.

(c) (f |V )−1 : W → V is holomorphic.

Corollary I. Let Ω ⊂ C be open, f holomorphic on Ω. If f is non constant,
then f is an open map.

Corollary II. Let Ω ⊂ C be open, f holomorphic on Ω. If f is injective,
then f(Ω) is open, f−1 is holomorphic and f ′(z) 6= 0 for all z ∈ Ω.

Theorem. (Morera) Let Ω ⊂ C be open and f : Ω→ C continuous. Suppose
that for every closed triangle ∆ ⊂ Ω we have∫

∂∆
f(ζ) dζ = 0

Then, f is holomorphic on Ω.
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Definition. Let Ω ⊂ C be open. A complex valued function f is said to be
meromorphic [a function with isolated singularities] on Ω if there
is a subset A ⊆ Ω with no limit points in Ω such that f is holomorphic on
Ω \ A and at each a ∈ A f as a pole [a pole or an essential singularity]. If
a ∈ A, we set

Res(f, a) :=
1

2πi

∫
γ
f(ζ) dζ,

where γ(t) := a+ reit for t ∈ [0, 2π] and r > 0 is such that Br(a)∩A = {a}
and Br(a) ⊆ Ω. One checks that Res(f, a) is independent of the r chosen.
N

Theorem. (Residue) Let Ω ⊂ C be open and f a meromophic (or a a
function with isolated singularities) with set of singularities given by A. If
Γ is a cycle in Ω \A such that IndΓ(z) = 0 for all z ∈ C \A, then

1

2πi

∫
Γ
f(ζ) dζ =

∑
a∈A

IndΓ(a)Res(f, a)

Theorem. Let Ω ⊂ C be open and Γ is a cycle in Ω such that

(1) IndΓ(z) = 0 for all z ∈ C \ Ω

(2) IndΓ(z) ∈ {0, 1} for z ∈ Ω \ Ran(Γ).

Let U := {z : IndΓ = 1} and f a holomorphic function on Ω that is not zero
on any unbounded component and with no zeros in Ran(Γ). Define

Nf := #number of zeros of f (counting multiplicity) in U

Then,

(a) (Argument Principle)

Nf =
1

2πi

∫
Γ

f ′(ζ)

f(ζ)
dζ

(b) (Rouché) If g is holomorphic on Ω and |f(z)−g(z)| < |f(z)| on Ran(Γ),
then Nf = Ng.
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