Analysis: Qual. Review

Alonso Delfín University of Oregon.

December 10, 2017

Contents

1	Fal	l 2016	: Math 616	2
	1.1	Theor	rems and Definitions	2
		1.1.1	Basic Measure Theory	2
		1.1.2	Lebesgue Measure	5
		1.1.3	L^p spaces	7
		1.1.4	Complex and Signed measures	8
2	Wi	nter 2	017: Math 617	11
	2.1	Theor	rems and Definitions	11
		2.1.1	Fubini's Theorem	11
		2.1.2	Differentiation	11
		2.1.3	Basic Functional Analysis	14
		2.1.4	Hilbert Spaces	15
		2.1.5	Basic Fourier Analysis	18
3	\mathbf{Sp}	ring 20	017: Math 618	20
	3.1	Theor	rems and Definitions	20
		3.1.1	Basic Complex Analysis	20

1 Fall 2016: Math 616

- 1.1 Theorems and Definitions.
- 1.1.1 Basic Measure Theory

Definition. Let X be a set. A toplogy on X is a set $\mathcal{T} \subseteq \mathcal{P}(X)$ such that

- (1) $\emptyset, X \in \mathcal{T}.$
- (2) If $U, V \in \mathcal{T}$, then $U \cap V \in \mathcal{T}$.
- (3) If $\{U_{\alpha}\}_{\alpha \in I} \subseteq \mathcal{T}$, then $\bigcup_{\alpha \in I} U_{\alpha} \in \mathcal{T}$.

Elements of \mathcal{T} are called *open sets*.

Definition. Let X be a set. A σ -algebra on X is a set $\mathfrak{M} \subseteq \mathcal{P}(X)$ such that

- (1) $\emptyset, X \in \mathfrak{M}.$
- (2) If $E \in \mathfrak{M}$, then $X \setminus E \in \mathfrak{M}$.
- (3) If $\{E_n\}_{n\in\mathbb{N}}\subseteq\mathfrak{M}$, then $\bigcup_{n\in\mathbb{N}}E_n\in\mathfrak{M}$.

Elements of \mathfrak{M} are called *measurable sets*.

▲

Definition. Let X be a set and \mathfrak{M} a σ -algebra on X. The pair (X, \mathfrak{M}) is called a **measurable space**. A measure on (X, \mathfrak{M}) is a function $\mu : \mathfrak{M} \to [0, \infty]$ such that

- (1) $\mu(\emptyset) = 0.$
- (2) If E_1, E_2, \ldots are pairwise disjoint elements of \mathfrak{M} , then

$$\mu\left(\bigcup_{n\in\mathbb{N}}E_n\right)=\sum_{n\in\mathbb{N}}\mu(E_n).$$

The triple (X, \mathfrak{M}, μ) is called a *measure space*. If $\mu(X) < \infty$, the measure μ is said to be *finite*; and if there is a partition $\{X_n\}_{n \in \mathbb{N}}$ of X such that $\mu(X_n) < \infty$ for all $n \in \mathbb{N}$, the measure μ is said to be σ -finite.

Proposition. (Properties of measures) Let (X, \mathfrak{M}, μ) be a measure space, $E, F \in \mathfrak{M}$ such that $E \subseteq F$, $\{E_n\}_{n \in \mathbb{N}} \subset \mathfrak{M}$ such that $E_n \subseteq E_{n+1}$, and $\{F_n\}_{n \in \mathbb{N}} \subset \mathfrak{M}$ such that $F_n \supseteq F_{n+1}$ and $\mu(F_1) < \infty$. Then,

(a) $\mu(E) \le \mu(F)$.

(b) If
$$\mu(E) < \infty$$
, then $\mu(F \setminus E) = \mu(F) - \mu(E)$

(c)

$$\mu\left(\bigcup_{n\in\mathbb{N}}E_n\right) = \lim_{n\to\infty}\mu(E_n) \quad and \quad \mu\left(\bigcap_{n\in\mathbb{N}}F_n\right) = \lim_{n\to\infty}\mu(F_n)$$

Definition. Let (X, \mathfrak{M}) and (Y, \mathfrak{N}) be measurable spaces. A function $h : X \to Y$ is said to be **measurable** if for all $F \in \mathfrak{N}$ it follows that $h^{-1}(F) \in \mathfrak{M}$. If (Y, \mathcal{T}) is instead a toplogical space, we only ask that $h^{-1}(V) \in \mathfrak{M}$ for any $V \in \mathcal{T}$. (In fact, any toplogical space is a measurable one with the sigma algebra being the smallest one containing all open sets)

Definition. Let (X, \mathfrak{M}) be a measurable space. A simple function $s : X \to \mathbb{C}$ is a function such that there exist $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{C}$ and $E_1, E_2, \ldots, E_n \in \mathfrak{M}$ such that $X = \bigsqcup_{k=1}^n E_k$ and

$$s = \sum_{k=1}^{n} \alpha_k \chi_{E_k}$$

Furthermore, if μ is a measure on (X, \mathfrak{M}) , we define the integral of s over X with respect to μ as follows

$$\int_X s \ d\mu := \sum_{k=1}^n \alpha_k \mu(E_k)$$

Lemma. Let (X, \mathfrak{M}) be a measurable space. If $f : X \to [0, \infty]$ is measurable , there is a sequence $(s_n)_{n=1}^{\infty}$ of non-negative simple functions such that $s_n \to f$ pointwise and $s_n \leq s_{n+1}$ for all $n \in \mathbb{N}$.

Definition. Let (X, \mathfrak{M}, μ) be a measure space and $f : X \to [0, \infty]$ a non-negative measurable function. Denote by $\mathcal{S}^+(X, \mathfrak{M})$ the set of all nonnegative simple functions. We define **the integral of** f over X with respect to μ as follows

$$\int_X f \ d\mu := \sup\left\{\int_X s \ d\mu : s \in \mathcal{S}^+(X, \mathfrak{M}), \ s \le f\right\}$$

Theorem. (Monotone Convergence Theorem) Let (X, \mathfrak{M}, μ) be a measure space and $(f_n)_{n \in \mathbb{N}}$ be a sequence of measurable non-negative functions such that

(i) $f_n \leq f_{n+1}$ for all $n \in \mathbb{N}$ (ii) $f(x) := \lim_{n \to \infty} f_n(x)$ for all $x \in X$

Then, f is measurable and

$$\int_X f \ d\mu = \lim_{n \to \infty} \int_X f_n \ d\mu$$

Theorem. (Fatou's Lemma) Let (X, \mathfrak{M}, μ) be a measure space and $(f_n)_{n \in \mathbb{N}}$ be a sequence of measurable non-negative functions. Then,

$$\int_X \liminf_{n \to \infty} f_n \ d\mu \le \liminf_{n \to \infty} \int_X f_n \ d\mu$$

Notation. Let X be a set. For a function $g: X \to [-\infty, \infty]$ we define functions $g_+, g_-: X \to [0, \infty]$ by

$$g_+(x) := \max\{g(x), 0\}$$
 and $g_-(x) := \max\{-g(x), 0\}$

Observe that $g = g_+ - g_-$. For a function $h : X \to \mathbb{C}$ we denote by Reh, Im $h : X \to \mathbb{R}$ the real and imaginary parts of h respectively. Observe that h = Reh + iImh.

Definition. Let (X, \mathfrak{M}, μ) be a measure space and let R be either $[-\infty, \infty]$ or \mathbb{C} . If $f: X \to R$ is measurable, we define **the integral of** f over X with respect to μ as follows

$$\int_X f \, d\mu := \int_X (\operatorname{Re} f)_+ \, d\mu - \int_X (\operatorname{Re} f)_- \, d\mu + i \left(\int_X (\operatorname{Im} f)_+ \, d\mu - \int_X (\operatorname{Im} f)_- \, d\mu \right)$$

Further, we say that f is *integrable* with respect to μ if

$$\int_X |f| \ d\mu < \infty$$

1	ι.
	۰.

Theorem. (Lebesgue Dominated Convergence Theorem) Let (X, \mathfrak{M}, μ) be a measure space and $(f_n)_{n \in \mathbb{N}}$ be a sequence of measurable functions $f_n : X \to \mathbb{C}$ such that

- (i) $f(x) := \lim_{n \to \infty} f_n(x)$ exists for all $x \in X$
- (ii) There is an integrable function $g: X \to [0, \infty)$ such that $|f| \leq g$.

Then, each f_n and f are integrable. Moreover,

$$\int_X f \ d\mu = \lim_{n \to \infty} \int_X f_n \ d\mu$$

1.1.2 Lebesgue Measure

Definition. Let X be a set. A function $\mu^* : \mathcal{P}(X) \to [0, \infty]$ is an **outer** measure if

- (1) $\mu^*(\emptyset) = 0.$
- (2) If $A \subseteq B \subseteq X$, then $\mu^*(A) \leq \mu^*(B)$.
- (3) If $A_1, A_2, \ldots \subseteq X$, then

$$\mu^*\left(\bigcup_{n\in\mathbb{N}}A_n\right)\leq\sum_{n\in\mathbb{N}}\mu^*(A_n)$$

▲

Furthermore, we say that $E \in \mathcal{P}(X)$ is μ^* -measurable if for any $A \subseteq X$ we have

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap (X \setminus E))$$

Remark. Intuitively, since $A \cap E$ and $A \cap (X \setminus E)$ are disjoint, we note that μ^* -measurable sets are those that "break" any subset of X as expected with respect to μ^* .

Theorem. (Carathéodory construction) Let X be a set and μ^* an outer measure. The μ^* -measurable sets form a σ -algebra on X.

Definition. Let $d \in \mathbb{N}$. An **open box** in \mathbb{R}^d is a subset of the form

$$B := (a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_d, b_d)$$

where for each $1 \le k \le d$ we have that $a_k \le b_k$. We define its volume by

$$\operatorname{vol}(B) := \prod_{k=1}^{d} (b_k - a_k)$$

Definition. Let $d \in \mathbb{N}$. For any $A \subseteq \mathbb{R}^d$ we denote by $\mathcal{B}(A)$ to the set of all countable covers of A by open boxes and we define $m_d^* : \mathcal{P}(\mathbb{R}^d) \to [0, \infty]$ by

$$m_d^*(A) := \inf\left\{\sum_{n=1}^\infty \operatorname{vol}(B_n) : \{B_n\}_{n \in \mathbb{N}} \in \mathcal{B}(A)\right\}$$

Theorem. The function $m_d^* : \mathcal{P}(\mathbb{R}^d) \to [0, \infty]$ is an outer measure.

Definition. The **Lebesgue measurable sets** on \mathbb{R}^d , denoted by \mathfrak{L}_d are those m_d^* -measurable sets and the **Lebesgue measure** on \mathbb{R}^d , denoted by m_d , is the restriction of m_d^* to \mathfrak{L}_d .

Definition. If (X, \mathcal{T}) is a toplogical space, the σ -algebra \mathfrak{B}_X generated by all the open sets of X is called the **Borel** σ -algebra of X and its elements are called **Borel sets**. If \mathfrak{M} is another σ -algebra on X and μ a measure on (X, \mathfrak{M}) , we say that μ is a **Borel measure** if $\mathfrak{B}_X \subseteq \mathfrak{M}$.

Theorem. Let $d \in \mathbb{N}$. Then $\mathfrak{B}_{\mathbb{R}^d} \subset \mathfrak{L}_d$ and therefore m_d is a Borel measure.

Definition. Let (X, \mathcal{T}) be a topolgical space. We say that X is **locally compact** if every point of X has an open neighborhood whose closure is compact.

Definition. Let (X, \mathcal{T}) be a locally compact Hausdorff space. A Borel measure μ is said to be *regular* if

- (1) $\mu(K) < \infty$ for all $K \subset X$ compact.
- (2) $\mu(E) = \inf\{\mu(U) : U \in \mathcal{T}, E \subseteq U\}$ for all $E \in \mathfrak{B}_X$
- (3) If $E \in \mathfrak{B}_X$ with $\mu(E) < \infty$ or if $E \in \mathcal{T}$, then

(3.1) $\mu(E) = \sup\{\mu(K) : K \text{ is compact } , K \subseteq E\}$ (3.2) $\mu(E) = \sup\{\mu(C) : X \setminus C \in \mathcal{T}, C \subseteq E\}$

Condition (2) is known as *outer regular*, (3.1) as *strong inner regular* and (3.2) as *weak inner regular*.

Theorem. Lebesgue measure m_d is regular.

Definition. Let X be a locally compact Hausdorff space. The set of **con**tinuous functions that vanish at infinity is defined as follows

 $C_0(X) := \{ f \in C(X) : \forall \varepsilon > 0, \{ x \in X : |f(x)| \ge \varepsilon \} \text{ is compact } \}$

The set of continuous functions with compact support is

$$C_c(X) := \{ f \in C(X) : \operatorname{supp}(f) \text{ is compact } \}$$

Theorem. Let X be a locally compact Hausdorff space and equip C(X) with the sup norm. Then, $C_0(X)$ is closed in C(X) and $C_c(X)$ is dense in $C_0(X)$.

Theorem. (Lusin) Let X be a locally compact Hausdorff space and μ a regular Borel measure. If $f: X \to \mathbb{C}$ is measurable and $A \subset X$ is such that

- (i) $\mu(A) < \infty$
- (ii) f(x) = 0 for all $x \notin A$

Then, for all $\varepsilon > 0$ there is $g \in C_c(X)$ such that

- $(a) \quad \mu(\{x\in X: f(x)\neq g(x)\})<\varepsilon$
- (b) $\sup_{x \in X} |g(x)| \le \sup_{x \in X} |f(x)|$

1.1.3 L^p spaces

Definition. Let (X, \mathfrak{M}, μ) be a measure space and $p \in [1, \infty)$. The space of *p*-integrable functions with respect to μ is

$$L^{p}(X,\mathfrak{M},\mu) := \frac{\{\text{measurable functions } f: X \to \mathbb{C} : |f|^{p} \text{ is integrable}\}}{\{\text{measurable functions } f: X \to \mathbb{C} : f = 0 \text{ a.e } [\mu]\}}$$

Theorem. Let (X, \mathfrak{M}, μ) be a measure space and $p \in [1, \infty)$. Put

$$\|[f]\|_p := \left(\int_X |f|^p\right)^{1/p}$$

Then, $\|\cdot\|_p : L^p(X, \mathfrak{M}, \mu) \to [0, \infty)$ is a well defined norm (so from now on we write $\|f\|_p := \|[f]\|_p$) and $L^p(X, \mathfrak{M}, \mu)$ is complete with respect to this norm.

Theorem. (Hölder) Let (X, \mathfrak{M}, μ) be a measure space and $p, q \in (1, \infty)$ such that $\frac{1}{p} + \frac{1}{q} = 1$. If $f \in L^p(X, \mathfrak{M}, \mu)$ and $g \in L^q(X, \mathfrak{M}, \mu)$, then $fg \in L^1(X, \mathfrak{M}, \mu)$ and

$$||fg||_1 \le ||f||_p ||g||_q$$

Definition. Let (X, \mathfrak{M}, μ) be a measure space. A measurable function $f: X \to \mathbb{C}$ is said to be *essentially bounded with respect to* μ if

$$||f||_{\infty} := \inf\{\alpha > 0 : \mu(\{x \in X : |f(x)| > \alpha\}) = 0\} < \infty$$

The space of essentially bounded functions is denoted by $L^{\infty}(X, \mathfrak{M}, \mu)$.

Theorem. Let (X, \mathfrak{M}, μ) be a measure space. Then, $\|\cdot\|_{\infty}$ is a well defined norm and $L^{\infty}(X, \mathfrak{M}, \mu)$ is complete with respect to this norm.

Theorem. Let (X, \mathfrak{M}, μ) be a measure space. If $f \in L^1(X, \mathfrak{M}, \mu)$ and $g \in L^{\infty}(X, \mathfrak{M}, \mu)$, then $fg \in L^1(X, \mathfrak{M}, \mu)$ and

$$||fg||_1 \le ||f||_p ||g||_{\infty}$$

1.1.4 Complex and Signed measures

Definition. Let (X, \mathfrak{M}) be a measurable space. A function $\nu : \mathfrak{M} \to \mathbb{C}$ is a **complex measure** if whenever E_1, E_2, \ldots are pairwise disjoint elements in \mathfrak{M} , it follows that

$$\nu\left(\bigcup_{n\in\mathbb{N}}E_n\right) = \sum_{n\in\mathbb{N}}\nu(E_n).$$

As consequence of this definition we see that $\nu(\emptyset) = 0$ and that μ may not assume infinite values.

Definition. Let (X, \mathfrak{M}) be a measurable space. A function $\nu : \mathfrak{M} \to (-\infty, \infty]$ (or $\to [-\infty, \infty)$), is a **signed measure** if whenever E_1, E_2, \ldots are pairwise disjoint elements in \mathfrak{M} , it follows that

$$\nu\left(\bigcup_{n\in\mathbb{N}}E_n\right) = \sum_{n\in\mathbb{N}}\nu(E_n) \text{ and } \nu(\emptyset) = 0$$

Definition. Let (X, \mathfrak{M}) be a measurable space and ν a complex or signed measure. A measurable set E is said to be ν -null if whenever $F \subseteq E$ it follows that $\nu(F) = 0$.

Definition. Let (X, \mathfrak{M}) be a measurable space and ν a signed measure. A measurable set E is said to be ν -**positive** if whenever $F \subseteq E$ it follows that $\nu(F) \geq 0$. A measurable set E is said to be ν -**negative** if whenever $F \subseteq E$ it follows that $\nu(F) \leq 0$.

Definition. Let (X, \mathfrak{M}) be a measurable space. Two measures μ, λ are **mutually singular**, denoted by $\mu \perp \lambda$, if there is a measurable set A such that $\mu(A) = 0 = \lambda(X \setminus A)$. If the measures are instead complex or signed measures, we require A to be μ -null and $X \setminus A$ is λ -null.

Definition. Let (X, \mathfrak{M}) be a measurable space. A measure μ is **absolutely** continuous with respect to another measure λ , denoted by $\mu \ll \lambda$, if whenever $\lambda(E) = 0$ it follows that $\mu(E) = 0$. If the measures are instead complex or signed measures, we require that λ -null implies μ -null.

Proposition. Let (X, \mathfrak{M}) be a measurable space and let μ, λ be finite measures. Then $\mu \ll \lambda$ if and only if for every $\varepsilon > 0$ there is $\delta > 0$ such that if $\lambda(E) < \delta$, then $\mu(E) < \varepsilon$.

Theorem. (Hahn Decomposition) Let (X, \mathfrak{M}) be a measurable space. If μ is a signed measure, then there exist measurable sets P and N such that P is μ -positive, N is μ -negative and $X = P \sqcup N$. The pair (P, N) is called **a Hahn decomposition of** X. Furthermore, a pair (P_0, N_0) is a Hahn decomposition of X if and only if $P \bigtriangleup P_0$ and $N \bigtriangleup N_0$ are μ -null.

Theorem. (Jordan Decomposition) Let (X, \mathfrak{M}) be a measurable space. If μ is a signed measure, then there exist measures μ_+, μ_- such that $\mu = \mu_+ - \mu_-$ and $\mu_+ \perp \mu_-$. Moreover, If $\mu = \lambda_1 - \lambda_2$, then $\mu_+ \leq \lambda_1$ and $\mu_- \leq \lambda_2$, and if also $\lambda_1 \perp \lambda_2$, then $\mu_+ = \lambda_1$ and $\mu_- = \lambda_2$.

Theorem. (Radon-Nikodym) Let (X, \mathfrak{M}) be a measurable space, μ a σ -finite measure and ν a complex measure such that $\nu \ll \mu$. Then, there exists

 $f: X \to \mathbb{C}$ such that $f \in L^1(\mu)$ and

$$\nu(E) = \int_E f \ d\mu$$

The function f is called a **Radon-Nikodym derivative of** ν with respect to μ , f is unique a.e $[\mu]$ and it's denoted as

$$f = \frac{d\nu}{d\mu}$$

Theorem. (Lebesgue Decomposition) Let (X, \mathfrak{M}) be a measurable space, μ a σ -finite measure and ν a complex measure. Then, there exist unique complex measures ν_s and ν_a such that $\nu = \nu_s + \nu_a$, $\nu_s \perp \mu$ and $\nu_a \ll \mu$.

Proposition. Let (X, \mathfrak{M}) be a measurable space. We denote by $M(X, \mathfrak{M})$ to the set of all complex measures on (X, \mathfrak{M}) . For $\mu \in M(X, \mathfrak{M})$ and $E \in \mathfrak{M}$ let

$$|\mu|(E) := \sup\left\{\sum_{n=1}^{\infty} |\mu(E_n)| : \{E_n\}_{n \in \mathbb{N}} \subset \mathfrak{M} \text{ is a pairwise disjoint cover of } E\right\}$$

Then, $|\mu|$ is a finite measure and $M(X, \mathfrak{M})$ is a Banach space with norm given by $\|\mu\| := |\mu|(X)$.

Theorem. Let (X, \mathfrak{M}) be a measurable space and $\mu \in M(X, \mathfrak{M})$. Then there is a function $h: X \to \mathbb{C}$ such that |h| = 1 a.e $[|\mu|]$ and

$$\mu(E) = \int_E h \ d|\mu|$$

Definition. Let X be a topological space and $\mu \in M(X, \mathfrak{M})$. We say that μ is regular if $|\mu|$ is regular.

Theorem. (Riesz Representation Theorems) Let X be a locally compact Hausdorff space.

(a) If $\omega \in C_0(X)^*$, then there exist a unique regular measure $\mu \in M(X, \mathfrak{B}_X)$ such that

$$\omega(f) = \int_X f \ d\mu \quad and \quad \|\omega\| = \|\mu\|$$

(b) If $\omega \in C_c(X)^*$ is positive (i.e. $\omega(f) \ge 0$ whenever $f \ge 0$), then there exist a unique regular positive measure μ such that

$$\omega(f) = \int_X f \ d\mu$$

2 Winter 2017: Math 617

2.1 Theorems and Definitions.

2.1.1 Fubini's Theorem

Definition. Let (X, \mathfrak{M}) and (Y, \mathfrak{N}) be measurable spaces. A **measurable** rectangle is a set of the form $E \times F$ where $E \in \mathfrak{M}$ and $F \in \mathfrak{N}$.

Definition. Let (X, \mathfrak{M}, μ) and (Y, \mathfrak{N}, ν) be σ -finite measure spaces. Then, we denote by $\mathfrak{M} \otimes \mathfrak{N}$ to the σ -algebra on $X \times Y$ geberated by the measurable rectangles.

Theorem. Let (X, \mathfrak{M}, μ) and (Y, \mathfrak{N}, ν) be σ -finite measure spaces. Then, there exist a unique measure $\mu \otimes \nu$ on $\mathfrak{M} \otimes \mathfrak{N}$ such that

$$(\mu \otimes \nu)(E \times F) = \mu(E)\nu(F) \ \forall \ (E \in \mathfrak{M}, \ F \in \mathfrak{N}).$$

Theorem. (Tonelli [Fubini]) Let (X, \mathfrak{M}, μ) and (Y, \mathfrak{N}, ν) be σ -finite measure spaces, $f : X \times Y \to \mathbb{C}$ a $\mathfrak{M} \otimes \mathfrak{N}$ -measurable function. Suppose that f is non-negative [f is $\mu \otimes \nu$ -integrable]. Then,

- (a) For all $y \in Y$, $x \mapsto f(x, y)$ is \mathfrak{M} -measurable [μ -integrable for a.e. $y \in Y$].
- (b) The function

$$y \mapsto \int_X f(x,y) \ d\mu(x)$$

is defined a.e $[\nu]$ and it's \mathfrak{N} -measurable $[\nu$ -integrable].

(c)

$$\int_{Y} \left(\int_{X} f(x, y) \ d\mu(x) \right) d\nu(y) = \int_{X \times Y} f \ d(\mu \otimes \nu)$$

Furthermore, items (a), (b) and (c) above also hold when interchanging $y \leftrightarrow x, Y \leftrightarrow X, \mathfrak{M} \leftrightarrow \mathfrak{N}$ and $\mu \leftrightarrow \nu$.

2.1.2 Differentiation

Definition. Let $d \in \mathbb{N}$ and let μ be a regular Borel measure on \mathbb{R}^d . For r > 0 and $x \in \mathbb{R}^d$, we define

$$(Q_r\mu)(x) := \frac{\mu(B_r(x))}{m(B_r(x))}$$

where m is the Lebesgue measure in \mathbb{R}^d . For $x \in \mathbb{R}^d$ set

$$D_{\mu}(x) := \lim_{r \to 0^+} (Q_r \mu)(x)$$

Definition. Let $d \in \mathbb{N}$ and let μ be a complex regular Borel measure on \mathbb{R}^d . For $x \in \mathbb{R}^d$ we put

$$M_{\mu}(x) := \sup_{r>0} (Q_r|\mu|)(x)$$

Lemma. Let $d \in \mathbb{N}$ and let μ be a complex regular Borel measure on \mathbb{R}^d . The function M_{μ} is lower semicontinuous, that is $M_{\mu}^{-1}((t,\infty))$ is open for every $t \in \mathbb{R}$.

Definition. Let $d \in \mathbb{N}$. A locally integrable functions is a Lebesgue measurable function $f: \mathbb{R}^d \to \mathbb{C}$ such that $\int_K |f| dm < \infty$ for all compact subsets $K \subset \mathbb{R}^d$. We denote the set of locally integrable functions by $L^1_{\text{loc}}(\mathbb{R}^d).$

Definition. For $f \in L^1_{loc}(\mathbb{R}^d)$ and $x \in \mathbb{R}^d$, define

$$Mf(x) := \sup_{r>0} \frac{1}{m(B_r(x))} \int_{B_r(x)} |f| \ dm$$

Definition. Let $d \in \mathbb{N}$ and $f \in L^1_{loc}(\mathbb{R}^d)$. A point $x_0 \in \mathbb{R}^k$ is a **Lebesgue** point of f if

$$\lim_{r \to 0^+} \frac{1}{m(B_r(x))} \int_{B_r(x)} |f - f(x_0)| \, dm = 0$$

Theorem. Let $d \in \mathbb{N}$ and $f \in L^1_{loc}(\mathbb{R}^d)$. Then, the complement of the set of Lebesgue points of f has measure 0. That is, a.e. $[m] \ x \in \mathbb{R}^d$ is a Lebesgue point.

Theorem. Let $d \in \mathbb{N}$ and let μ be a complex regular Borel measure on \mathbb{R}^d such that $\mu \ll m$. If $f = \frac{d\mu}{dm}$ a.e. [m], it follows that $f(x) = D_{\mu}(x)$ for all Lebesgue points of f.

Definition. Let $d \in \mathbb{N}$ and $x \in \mathbb{R}^d$. We say that a sequence of subsets of \mathbb{R}^d , $(E_n)_{n \in \mathbb{N}}$, **shrinks nicely to** x is there is a sequence $(r_n)_{n \in \mathbb{N}}$ in $(0, \infty)$ and $\alpha > 0$ such that

- (1) $r_n \to 0$
- (2) $E_n \subset B_{r_n}(x)$
- (3) $m(E_n) \ge \alpha m(B_{r_n}(x))$

Theorem. If $d \in \mathbb{N}$, $f \in L^1_{loc}(\mathbb{R}^d)$, $x \in \mathbb{R}^d$ is a Lebesgue point of f and $(E_n)_{n \in \mathbb{N}}$ shrinks nicely to x, then

$$\lim_{n \to \infty} \frac{1}{m(E_n)} \int_{E_n} f \ fm = f(x)$$

Definition. A function $f : [a, b] \to \mathbb{C}$ is **absolutely continuous** if for every $\varepsilon > 0$, there is $\delta > 0$ such that if $(a_1, b_1), \ldots, (a_n, b_n)$ are disjoint intervals in [a, b] and $\sum_{k=1}^{n} (b_k - a_k) < \delta$, it follows that $\sum_{k=1}^{n} |f(b_k) - f(a_k)| < \varepsilon$.

Theorem. If $f : [a, b] \to \mathbb{C}$ is absolutely continuous, it's derivative f' exist a.e $[m], f' \in L^1([a, b], m)$ and

$$f(x) = f(a) + \int_a^x f' \ dm$$

Theorem. Suppose that $f : [a, b] \to \mathbb{R}$ is non decreasing. The following are equivalent.

- (i) f is absolutely continuous.
- (*ii*) If m(E) = 0, then m(f(E)) = 0.
- (iii) f' exist a.e $[m], f' \in L^1([a, b], m)$ and

$$f(x) = f(a) + \int_a^x f' \, dm$$

2.1.3 Basic Functional Analysis

Theorem. (Hahn-Banach) Let $\mathbb{K} = \mathbb{C}$ or \mathbb{R} . Let E be a normed vector space over \mathbb{K} and let M be a subspace of E. If $\omega_0 : M \to \mathbb{K}$ is a bounded linear functional, there exist a linear functional $\omega : E \to \mathbb{K}$ such that

- (i) $\omega|_M = \omega_0$
- (*ii*) $\|\omega\| = \|\omega_0\|$

Corollary I. If E is a normed vector space and $\xi_0 \in E \setminus \{0\}$, then there exist $\omega : E \to \mathbb{C}$ such that

- (*i*) $\omega(\xi_0) = \|\xi_0\|$
- (*ii*) $\|\omega\| = 1$

Corollary II. If E is a normed vector space and $\Phi: E \to E^{**}$ is given by

 $[\Phi(\xi)](\omega) := \omega(\xi) \text{ for all } \xi \in E \text{ and } \omega \in E^*$,

then Φ is an injective isometry. We may, and do, identify E as a subset of E^{**} .

Theorem. (Baire Category Theorem) Let X be a complete metric space. Let U_1, U_2, \ldots , be open dense subsets of X. Then,

$$\bigcap_{n=1}^{\infty} U_n \text{ is dense in } X$$

Theorem. (Uniform Boundedness Principle) Let E be a Banach space, F a normed vector space and $S \subseteq L(E, F)$. Assume there is a dense G_{δ} set $B \subseteq E$ (i.e. B is a countable intersection of open sets) such that for any $\xi \in B$,

$$\sup_{a\in S} \|a(\xi)\| < \infty$$

Then,

$$\sup_{a \in S} \|a\| < \infty$$

Theorem. (Open Mapping Theorem) Let E, F be Banach spaces and $a \in L(E, F)$ surjective. Then,

(i) There is $\delta > 0$ such that $B_{\delta}^F(0) \subseteq a(B_1^E(0))$.

- (ii) If $U \subset E$ is open, then a(U) is open.
- (iii) If a is also injective, then $a^{-1} \in L(F, E)$.

Theorem. (Closed Graph) If $a : E \to F$ is linear, then a is bounded if and only if the graph of a is a closed subset of $E \times F$.

2.1.4 Hilbert Spaces

Definition. Let \mathcal{H} be a vector space over \mathbb{C} . A scalar product on \mathcal{H} is a function $(\xi, \eta) \mapsto \langle \xi, \eta \rangle$ from $\mathcal{H} \times \mathcal{H} \to \mathbb{C}$ such that

- (1) It's linear in ξ for each fixed η .
- (2) $\overline{\langle \xi, \eta \rangle} = \langle \eta, \xi \rangle.$
- (3) $\langle \xi, \xi \rangle \ge 0.$
- (4) If $\langle \xi, \xi \rangle = 0$, then $\xi = 0$.

Theorem. (Cauchy-Schwarz)

$$|\langle \xi, \eta \rangle|^2 \le \langle \xi, \xi \rangle \langle \eta, \eta \rangle$$

Remark. A scalar product on \mathcal{H} induces a norm in \mathcal{H} by letting $\|\xi\| := (\langle \xi, \xi \rangle)^{1/2}$, so Cauchy-Schwarz gives $|\langle \xi, \eta \rangle| \le \|\xi\| \|\eta\|$.

Definition. If \mathcal{H} is equipped with a scalar product, we say that \mathcal{H} is a **Hilbert space** if it is complete with respect to the induced norm.

Theorem. (Parallelogram Law) In any scalar product space we have

$$\|\xi + \eta\|^2 + \|\xi - \eta\|^2 = 2(\|\xi\|^2 + \|\eta\|^2)$$

Definition. Let \mathcal{H} be a scalar product space. We say that $\xi, \eta \in \mathcal{H}$ are **orthogonal**, denoted by $\xi \perp \eta$, if $\langle \xi, \eta \rangle = 0$. For $S, T \subseteq \mathcal{H}$, we say that S **is orthogonal to** T, denoted by $S \perp T$, if $\xi \perp \eta$ for all $\xi \in S$ and all $\eta \in T$. Further, we put

$$S^{\perp} := \{ \eta \in \mathcal{H} : \eta \perp \xi, \ \forall \ \xi \in S \}$$

Theorem. If \mathcal{H} is a Hilbert space and $S \subseteq \mathcal{H}$, then S^{\perp} is a closed subset of \mathcal{H} .

Theorem. If \mathcal{H} is a Hilbert space and K is a closed convex subset of \mathcal{H} , then there is a unique $\xi_0 \in K$ such that

$$dist(0, K) = \|\xi_0\|$$

Theorem. Let \mathcal{H} be is a Hilbert space and $M \subseteq \mathcal{H}$ a closed subspace. Then, for every $\xi \in \mathcal{H}$ there are unique $p(\xi) \in M$ and $q(\xi) \in M^{\perp}$ such that

- (1) $\xi = p(\xi) + q(\xi)$.
- (2) $p: \mathcal{H} \to M, q: \mathcal{H} \to M^{\perp}$ are linear with $||p||, ||q|| \leq 1$ and $p^2 = p$, $q^2 = q$.
- (3) $\|\xi\|^2 = \|p(\xi)\|^2 + \|q(\xi)\|^2$
- (4) $p(\xi)$ is the nearest point in M to ξ , $q(\xi)$ is the nearest point in M^{\perp} to ξ ,

Corollary. Let \mathcal{H} be is a Hilbert space and $M \subseteq \mathcal{H}$ a closed subspace. Then,

$$\mathcal{H} = M \oplus M^{\perp}$$

Theorem. (*Riesz*) Let \mathcal{H} be is a Hilbert space and $\omega \in \mathcal{H}^*$. Then, there is a unique $\eta \in \mathcal{H}$ such that

$$\omega(\xi) = \langle \xi, \eta \rangle \ \forall \ \xi \in \mathcal{H}$$

Moreover, $\|\omega\| = \|\eta\|$.

Theorem. Let \mathcal{H} be is a Hilbert space and $a \in L(\mathcal{H})$. Then there is a unique $a^* \in L(\mathcal{H})$ such that

$$\langle a\xi,\eta\rangle = \langle \xi,a^*\eta\rangle \ \forall \ \xi,\eta\in\mathcal{H}$$

Furthermore, for any $a, b \in L(\mathcal{H})$ and $\lambda \in \mathbb{C}$

- (1) $||a^*|| = ||a||.$
- (2) $(a + \lambda b)^* = a^* + \overline{\lambda}b^*.$
- (3) $(ab)^* = b^*a^*$.

- (4) $id^* = id.$
- (5) $(a^*)^* = a$.
- (6) $||a^*a|| = ||a||^2$.

Definition. Let \mathcal{H} be is a Hilbert space. A family $(\xi_i)_{i \in I}$ of elements in \mathcal{H} is: **orthogonal** if $\xi_i \perp \xi_j$ for all $i \neq j$ in I; **orthonormal** if in also $||xi_i|| = 1$ for all $i \in I$; and a **Hilbert basis** if in addition span($\{\xi_i : i \in I\}$) is dense in \mathcal{H} .

Definition. Let \mathcal{H} be is a Hilbert space and $(\xi_i)_{i \in I}$ a family of elements in \mathcal{H} . We say that

$$\sum_{i\in I}\xi_i\to\xi\in\mathcal{H}$$

if for all $\varepsilon > 0$ there is a finite set $F \subset I$, such that for every finite set $S \subset I$ with $F \subset S$, we have

$$\left\|\sum_{i\in S}\xi_i - \xi\right\| < \varepsilon$$

Theorem. Let \mathcal{H} be any Hilbert space.

- (a) \mathcal{H} has an orthonormal basis.
- (b) Any other orthonormal basis of H has the same cardinality.
- (c) For an orthonormal basis $(\xi_i)_{i\in I}$, the map $\ell^2(I) \to \mathcal{H}$ given by

$$(x_i)_{i\in I}\mapsto \sum_{i\in I} x_i\xi_i$$

is an isometric isomorphisim with inverse given by

$$\xi \mapsto (\langle \xi, \xi_i \rangle)_{i \in I}$$

Theorem. Let \mathcal{H} be is a Hilbert space and $(\xi_i)_{i \in I}$ a family of elements in \mathcal{H} such that $\operatorname{span}(\{\xi_i : i \in I\}) = M$. Then,

(a) For all $\xi \in \mathcal{H}$,

$$\sum_{i \in I} |\langle \xi, \xi_i \rangle|^2 \le \|\xi\|^2$$

(b) The orthogonal projection $p: \mathcal{H} \to M$ is

$$p\xi = \sum_{i \in I} \langle \xi, \xi_i \rangle \xi_i$$

2.1.5 Basic Fourier Analysis

Definition. For $f, g \in L^1(\mathbb{R}, m)$ we define the **convolution** f * g by

$$(f * g)(x) := \int_{\mathbb{R}} f(y)g(x - y) \ dm(y)$$

▲

Theorem. If $f, g \in L^1(\mathbb{R}, m)$ are Lebesgue measurable, then

- (a) $(x,y) \mapsto f(y)g(x-y)$ is Lebesgue measurable
- (b) $y \mapsto f(y)g(x-y)$ is integrable for a.e. x
- (c) $||f * g||_1 \le ||f||_1 ||g||_1$

Definition. Put $\overline{m} := (2\pi)^{-1/2}m$, and let $f \in L^1(\mathbb{R}, \overline{m})$. We define the **Fourier Transform of** f, denoted by \widehat{f} , by

$$\widehat{f}(t) := \int_{\mathbb{R}} e^{-itx} f(x) \ d\overline{m}(x)$$

Proposition. (Properties of \hat{f}) For $f \in L^1(\mathbb{R}, \overline{m})$, $\alpha \in \mathbb{R}$ and $\beta \in (0, \infty)$ we have

- (a) If $g(x) = e^{i\alpha x} f(x)$, then $\hat{g}(t) = \hat{f}(t-\alpha)$
- (b) If $g(x) = f(x \alpha)$, then $\widehat{g}(t) = e^{-i\alpha t} \widehat{f}(t)$
- (c) If $g \in L^1(\mathbb{R}, \overline{m})$, then $\widehat{(f * g)} = \widehat{f} \cdot \widehat{g}$
- (d) If $g(x) = \overline{f(-x)}$, then $\widehat{g}(t) = \overline{\widehat{f}(t)}$
- (e) If $g(x) = f(\beta^{-1}x)$, then $\widehat{g}(t) = \beta \widehat{f}(t)$
- (f) If g(x) = -ixf(x) is such that g is in $L^1(\mathbb{R}, \overline{m})$, then $(\widehat{f})'$ exists and is equal to \widehat{g} .

Theorem. The map $f \mapsto \hat{f}$ is a contractive linear map from $L^1(\mathbb{R}, \overline{m})$ to $C_0(\mathbb{R})$; that is $\hat{f} \in C_0(\mathbb{R})$ and $\|\hat{f}\|_{\infty} \leq \|f\|_1$.

Theorem. (Fourier Inversion) Suppose that $f \in L^1(\mathbb{R}, \overline{m})$ and that $\hat{f} \in L^1(\mathbb{R}, \overline{m})$. If

$$g(x) := \int_{\mathbb{R}} e^{itx} \widehat{f}(t) \ d\overline{m}(t),$$

then $g \in C_0(\mathbb{R})$ and g = f a.e.

Corollary. If $f \in L^1(\mathbb{R}, \overline{m})$ and $\widehat{f} = 0$, then f = 0 a.e.

Theorem. (Plancherel) There is a mapping $\mathcal{F} : L^2(\mathbb{R}, \overline{m}) \to L^2(\mathbb{R}, \overline{m})$ such that

- (1) $\mathcal{F}(f) = \widehat{f} \text{ for all } f \in L^1(\mathbb{R}, \overline{m}) \cap L^2(\mathbb{R}, \overline{m}).$
- (2) $\|\mathcal{F}(f)\|_2 = \|f\|_2$ for all $f \in L^2(\mathbb{R}, \overline{m})$
- (3) \mathcal{F} is a Hilbert space isomorphism of $L^2(\mathbb{R},\overline{m})$ onto itself.
- (4) If

$$\varphi_A(t) := \int_{-A}^{A} e^{-itx} f(x) \ d\overline{m}(x) \quad and \quad \psi_A(x) := \int_{-A}^{A} e^{itx} \mathcal{F}(f)(t) \ d\overline{m}(t),$$

Then

$$\lim_{A \to \infty} \|\varphi_A - \mathcal{F}(f)\|_2 = 0 \quad and \quad \lim_{A \to \infty} \|\psi_A - f\|_2 = 0$$

Corollary. If $f \in L^2(\mathbb{R}, \overline{m})$ and $\mathcal{F}(f) \in L^1(\mathbb{R}, \overline{m})$, then

$$f(x) = \int_{\mathbb{R}} e^{itx} \mathcal{F}(f)(t) \ d\overline{m}(t) \ a.e$$

Remark. $L^1(\mathbb{R},\overline{m})$ is a Banach algebra with multiplication given by convolution.

Theorem. To every non-zero complex homomorphism $\omega : L^1(\mathbb{R}, \overline{m}) \to \mathbb{C}$ (*i.e.* Banach algebra homomorphism) corresponds a unique $t \in \mathbb{R}$ such that $\omega(f) = \widehat{f}(t)$ for all $f \in L^1(\mathbb{R}, \overline{m})$

3 Spring 2017: Math 618

3.1 Theorems and Definitions.

3.1.1 Basic Complex Analysis

Definition. For Ω an open subset of \mathbb{C} , $a \in \Omega$, we say that $f : \Omega \to \mathbb{C}$ is complex differentiable at a is the following limit exits

$$\lim_{z \to a} \frac{f(z) - f(a)}{z - a} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$$

In such case, the limit is denoted by f'(a). Equivalently, if f := u + iv, z = x + iy, then f is complex differentiable at $a := x_0 + iy_0$ if u and v satisfy the Cauchy Riemann equations:

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0) \text{ and } \frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0)$$

Furthermore,

$$f'(a) = \frac{\partial u}{\partial x}(x_0, y_0) + i\frac{\partial v}{\partial x}(x_0, y_0)$$

Lemma. If f'(a) exists, then f is continuous at a.

Definition. Let $\Omega \subseteq \mathbb{C}$ open and $f : \Omega \to \mathbb{C}$. We say that f is **repre**sentable by power series on Ω if for all $a \in \Omega$ and for all r > 0 with $B_r(a) \subseteq \Omega$, there is a sequence $(c_n)_{n \in \mathbb{N}_0}$ in \mathbb{C} such that

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n \ \forall \ z \in B_r(a)$$

Definition. Let $\Omega \subseteq \mathbb{C}$ open and $f : \Omega \to \mathbb{C}$. We say that f is **weakly** representable by power series on Ω if for all $z_0 \in \Omega$, there is $a \in \Omega$ such that f is given by a power series about a on some neighborhood of z_0 .

Theorem. For a sequence $(c_n)_{n \in \mathbb{N}_0}$ in \mathbb{C} , we define $R \in [0, \infty]$ by

$$\frac{1}{R} := \limsup_{n \to \infty} |c_n|^{1/n}$$

Then,

- (a) If |z-a| > R, then $c_n(z-a)^n \not\to 0$ as $n \to \infty$.
- (b) For all $s \in (0, R)$, for all $a \in \mathbb{C}$, the series $\sum_{n \in \mathbb{N}_0} c_n (z a)^n$ converges uniformly and absolutely on $\overline{B_s(a)}$

Theorem. Let $\Omega \subseteq \mathbb{C}$ open . If $f : \Omega \to \mathbb{C}$ is representable by power series on Ω , then f is complex differentiable on Ω and f' is also representable by power series on Ω . Further,

if
$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$$
, then $f'(z) = \sum_{n=1}^{\infty} n c_n (z-a)^{n-1}$.

Corollary. If $f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$, then $f^{(k)}(a) = k! c_k$ for all $n \in \mathbb{N}_0$.

Lemma. Let (X, μ) be a complex measure space, $\Omega \subseteq \mathbb{C}$ open, and $\varphi : X \to \mathbb{C}$ measurable with $\varphi(X) \cap \Omega = \emptyset$. Then,

$$f(z) := \int_X \frac{1}{\varphi(x) - z} d\mu(x)$$

is representable by power series on Ω with coefficients around $a \in \Omega$ given by

$$c_n = \int_X \frac{1}{(\varphi(x) - a)^{n+1}} d\mu(x)$$

Definition. Let $\gamma : [\alpha, \beta] \to \mathbb{C}$ be a C^1 curve and f a complex valued function defined on $\operatorname{Ran}(\gamma)$. We define the *line integral of* f along γ by

$$\int_{\gamma} f(\zeta) \ d\zeta := \int_{\alpha}^{\beta} f(\gamma(t)) \ \gamma'(t) \ dt$$

Definition. Let $\gamma : [\alpha, \beta] \to \mathbb{C}$ be a piecewise C^1 closed curve, and let $\Omega := \mathbb{C} \setminus \operatorname{Ran}(\gamma)$. The *winding number of* γ *around* $z \in \Omega$ is defined by

$$\operatorname{Ind}_{\gamma}(z) := \int_{\gamma} \frac{1}{\zeta - z} d\zeta$$

Theorem. Let $\gamma : [\alpha, \beta] \to \mathbb{C}$ be a piecewise C^1 closed curve, and let $\Omega := \mathbb{C} \setminus \operatorname{Ran}(\gamma)$. The function $\operatorname{Ind}_{\gamma} : \Omega \to \mathbb{Z}$ is continuous and vanishes on the unbounded component of Ω .

Theorem. Let $\Omega \subseteq \mathbb{C}$ open, f holomorphic on Ω and $\gamma : [\alpha, \beta] \to \mathbb{C}$ be a piecewise C^1 closed curve such that $\operatorname{Ind}_{\gamma} = 0$ on $\mathbb{C} \setminus \Omega$. Then,

(a) (Cauchy's Theorem)

$$\int_{\gamma} f(\zeta) \ d\zeta = 0$$

(b) (Cauchy's Formula) If $a \in \Omega \setminus \operatorname{Ran}(\gamma)$

$$\operatorname{Ind}_{\gamma}(z)f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - a} d\zeta$$

Theorem. Let $\Omega \subset \mathbb{C}$ be a region (i.e. open and connected), f holomorphic on Ω , and $Z(f) := \{z \in \Omega : f(z) = 0\}$. Then,

- (a) $Z(f) = \Omega$ or Z(f) has no limit point in Ω
- (b) If Z(f) has no limit point in Ω , then Z(f) is at most countable and for all $a \in \mathbb{Z}(f)$ there is a unique $n \in \mathbb{N}$ and a holomorphic function g on Ω with $g(a) \neq 0$, such that

$$f(z) = (z-a)^n g(z) \ \forall \ z \in \Omega$$

The number n is known as the order of the zero a.

Corollary. Let $\Omega \subset \mathbb{C}$ be a region, f, g holomorphic on Ω and $A \subset \Omega$ with limit points in ω . If $f|_A = g|_A$, then f = g.

Definition. If $\Omega \subseteq \mathbb{C}$ is open and $f : \Omega \setminus \{a\} \to \mathbb{C}$ holomorphic, we say that f has **a singularity at** a. Further,

- (1) *a* is *removable* if there is a holomorphic function *g* on Ω such that $g|_{\Omega \setminus \{a\}} = f$.
- (2) *a* is **a** pole if there is $n \in \mathbb{N}, c_1, \ldots, c_n \in \mathbb{C}$, with $c_n \neq 0$ and a holomorphic function g on Ω , such that

$$f(z) = \sum_{k=1}^{n} \frac{c_z}{(z-a)^k} + g(z) \quad \forall \ z \in \Omega \setminus \{a\}$$

The number n is known as the order of the pole a.

(3) a is an essential singularity if for all r > 0

$$f((B_r(a) \cap \Omega) \setminus \{a\})$$

is dense in \mathbb{C} .

Theorem. (Cauchy Estimates) Let $a \in \mathbb{C}$, r > 0. If f is holomorphic on $B_r(a)$ and $|f(z)| \leq M$ for all $z \in B_r(a)$, then

$$|f^{(n)}(a)| \le \frac{n!M}{r^n} \ \forall n \in \mathbb{N}$$

Theorem. (Liouville's Theorem) Any bounded entire function is constant.

Theorem. (Maximum Modulus) Let $\Omega \subset \mathbb{C}$ be a region, f holomorphic on Ω and $\overline{B_r(a)} \subset \Omega$ for some $a \in \Omega$, r > 0. Then

$$|f(a)| \le \sup_{\theta} |f(a + re^{i\theta})|$$

Equality occurs if and only if f is constant in Ω .

Corollary. Let $\Omega \subset \mathbb{C}$ be a region. If f is holomorphic on Ω and |f| has a local maximum on Ω , then f is constant.

Theorem. (Open Mapping) Let $\Omega \subset \mathbb{C}$ be open, f holomorphic on Ω and $a \in \Omega$ such that $f(a) \neq 0$. Then, there is an open neighborhood $V \subset \Omega$ of a such that

- (a) $f|_V$ is injective.
- (b) W := f(V) is open.
- (c) $(f|_V)^{-1}: W \to V$ is holomorphic.

Corollary I. Let $\Omega \subset \mathbb{C}$ be open, f holomorphic on Ω . If f is non constant, then f is an open map.

Corollary II. Let $\Omega \subset \mathbb{C}$ be open, f holomorphic on Ω . If f is injective, then $f(\Omega)$ is open, f^{-1} is holomorphic and $f'(z) \neq 0$ for all $z \in \Omega$.

Theorem. (Morera) Let $\Omega \subset \mathbb{C}$ be open and $f : \Omega \to \mathbb{C}$ continuous. Suppose that for every closed triangle $\Delta \subset \Omega$ we have

$$\int_{\partial\Delta} f(\zeta) \ d\zeta = 0$$

Then, f is holomorphic on Ω .

Definition. Let $\Omega \subset \mathbb{C}$ be open. A complex valued function f is said to be *meromorphic* [a function with isolated singularities] on Ω if there is a subset $A \subseteq \Omega$ with no limit points in Ω such that f is holomorphic on $\Omega \setminus A$ and at each $a \in A$ f as a pole [a pole or an essential singularity]. If $a \in A$, we set

$$\operatorname{Res}(f,a) := \frac{1}{2\pi i} \int_{\gamma} f(\zeta) \ d\zeta,$$

where $\gamma(t) := a + re^{it}$ for $t \in [0, 2\pi]$ and r > 0 is such that $\overline{B_r(a)} \cap A = \{a\}$ and $\overline{B_r(a)} \subseteq \Omega$. One checks that $\operatorname{Res}(f, a)$ is independent of the r chosen.

Theorem. (Residue) Let $\Omega \subset \mathbb{C}$ be open and f a meromophic (or a a function with isolated singularities) with set of singularities given by A. If Γ is a cycle in $\Omega \setminus A$ such that $\operatorname{Ind}_{\Gamma}(z) = 0$ for all $z \in \mathbb{C} \setminus A$, then

$$\frac{1}{2\pi i} \int_{\Gamma} f(\zeta) \ d\zeta = \sum_{a \in A} \operatorname{Ind}_{\Gamma}(a) \operatorname{Res}(f, a)$$

Theorem. Let $\Omega \subset \mathbb{C}$ be open and Γ is a cycle in Ω such that

- (1) $\operatorname{Ind}_{\Gamma}(z) = 0$ for all $z \in \mathbb{C} \setminus \Omega$
- (2) $\operatorname{Ind}_{\Gamma}(z) \in \{0,1\}$ for $z \in \Omega \setminus \operatorname{Ran}(\Gamma)$.

Let $U := \{z : \operatorname{Ind}_{\Gamma} = 1\}$ and f a holomorphic function on Ω that is not zero on any unbounded component and with no zeros in $\operatorname{Ran}(\Gamma)$. Define

$$N_f := \#$$
number of zeros of f (counting multiplicity) in U

Then,

(a) (Argument Principle)

$$N_f = \frac{1}{2\pi i} \int_{\Gamma} \frac{f'(\zeta)}{f(\zeta)} \, d\zeta$$

(b) (Rouché) If g is holomorphic on Ω and |f(z) - g(z)| < |f(z)| on $\operatorname{Ran}(\Gamma)$, then $N_f = N_g$.