Calculus of Parametric Eq. (§1.7, 3.4, 6.4)

Thanks to Faan Tone Liu

Key Points:

- Suppose $x(t)$ and $y(t)$ are parametric equations and t represents time. Then
- $\frac{d x}{d t}$ represents \qquad
- $\frac{d y}{d t}$ represents \qquad
- $\frac{d y}{d x}$ represents
- Formulae for $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ in terms of t are

$$
\begin{gathered}
\frac{d y}{d x}= \\
\frac{d^{2} y}{d x^{2}}=
\end{gathered}
$$

- The instantaneous speed (of the snail) along the curve as a function of t is:
- The arc length of the curve for t in $[a, b]$ is the integral of \qquad :
Arc Length =
- Other Notes:

Examples:

1. Consider the parametric curve given by $\left\{\begin{array}{l}x=5 \cos (3 t) \\ y=5 \sin (3 t) .\end{array}\right.$

At $t=\frac{\pi}{4}$ and $t=\frac{\pi}{2}$, find the slope of the tangent line and the speed.
2. A half-line is parameterized by $\left\{\begin{array}{l}x=2+3 t \\ y=-1+5 t,\end{array} \quad\right.$ where $t \geq 0$.
(a) Does $(5,4)$ lie on the ray?
(b) Does $(2,1)$ lie on the ray?
(c) Does $(-1,-6)$ lie on the ray?
(d) When does the line hit the y-axis?
(e) What is the speed of motion along the line?
(f) What is the slope of the line?
3. Use technology to graph

$$
\left\{\begin{array}{l}
x=t^{2} \\
y=t^{3}-3 t
\end{array} \quad ; t \in \mathbb{R}\right.
$$

(a) Find equations for the tangent lines to the curve at $(3,0)$.
(b) At $t=1$, find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$. Check the concavity.
4. Consider the parametric curve given by $\left\{\begin{array}{l}x=t \cos t \\ y=t \sin t\end{array}\right.$, where $0 \leq t \leq 4 \pi$.
(a) At time $t=3.5$, which direction is the particle moving? Find the speed of the particle at this time.
(b) Find the average speed and the arc length of the particle on [0, 4]. What do you notice?
5. A cycloid is a path traced by a point on the edge of a wheel.
(a) Find parametric equations for the cycloid generated by the wheel of radius 1 shown. Suppose t is measured in radians.

(b) For what value(s) of t is the tangent line horizontal?
(c) For what value(s) of t is the point stopped?

