§8.2: Series

(Thanks to Faan Tone Liu)
Key Points (Part I):

- An infinite series is the sum of the terms of a sequence:
- More precisely, an infinite series is related to a special sequence of partial sums:
- This allows us to see that the sum of an infinite series is:
- Graphical perspective (infinite series are related to Riemann sums):
- Important tool:

Divergence Test:

Examples:

1. (Using the divergence test) Does $\sum_{n=1}^{\infty} \frac{e^{n}}{n^{2}}$ converge or diverge?
2. (Harmonic series) Does $\sum_{n=1}^{\infty} \frac{1}{n}$ converge or diverge?
3. (Telescoping Series) Explicitly calculate the sum of the series $\sum_{i=1}^{\infty} \frac{1}{i(i+1)}$.

Key Points (PartII):

- $\sum_{n=1}^{\infty} a_{n}=$
- The goal is to determine if $\sum_{n=1}^{\infty} a_{n}$ converges or diverges. So far, we have a few tools:
- Divergence test. Check if \qquad . If the limit is not zero, you are done and $\sum_{n=1}^{\infty} a_{n} \ldots$. If $a_{n} \rightarrow 0$, then too bad, we have to do more.
- We can directly calculate the partial sums $S_{N}=\sum_{n=1}^{N} a_{n}$ for telescoping series and take the limit $\lim _{N \rightarrow \infty} S_{N}$ to establish convergence or divergence.
- Geometric series are our friends! A geometric series has the form \qquad . We know that
* $\sum_{i=1}^{n} a r^{i-1}=$ \qquad . In other words,
* If $|r|<1$, then $\sum_{i=1}^{\infty} a r^{i-1}=$ \qquad . In other words,
* If $|r| \geq 1$, then $\sum_{i=1}^{\infty} a r^{i-1}$ \qquad .
- The harmonic series is \qquad . It \qquad .
- Other notes:

Examples: For each of these series, write it in expanded form if it is given in Σ-notation, and in Σ-notation if it is given in expanded form. Then, determine if the series converges and if so, find the sum.

Ex A. $\sum_{n=0}^{\infty}\left(\frac{\pi}{e}\right)^{n-1}$
Ex B. $\sum_{i=1}^{\infty} \ln \left(\frac{i+1}{i}\right)$

Ex C. $3+\frac{3}{2}+1+\frac{3}{4}+\frac{3}{5}+\frac{3}{6}+\cdots$	Ex D. $\sum_{n=2}^{\infty} 3\left(\frac{2}{3}\right)^{n-1}$

Ex E. $5+\sqrt{5}+\sqrt[3]{5}+\sqrt[4]{5}+\cdots$
Ex F. $1+x+x^{2}+x^{3}+\cdots$

