§7.5: The Logistic Equation

Solutions

(Thanks to Faan Tone Liu)

Key Points:

- Review: Often, population growth can be modeled by P' = kP. The solution is P(t) = P. ekt, and this situation is called exponential growth.

 (see example 1 below)
- Exponential growth is not realistic in the long run because $\lim_{t\to\infty} P(t) = \frac{1}{t}$, so we like population grows not modify it to get the Logistic Equation LOCAYS)

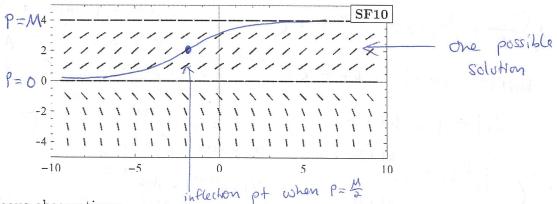
$$\frac{dP}{dt} = \mathsf{KP}\left(\mathsf{I} - \frac{\mathsf{P}}{\mathsf{M}}\right) \quad ,$$

where M is a constant that represents the carrying capacity of the population. The solution is

$$P(t) = \frac{M}{1 + Ae^{Nt}}$$
, $A = \frac{M - P_0}{P_0}$
 $VSE + CE Milher Condition$

P(0) = P

• The slope field for the logistic growth equation is



- Miscellaneous observations:
 - If P is small, then $\frac{dP}{dt} \approx |P|$ (basically exponential growth).
 - If $P \approx M$, then $\frac{dP}{dt} \approx$ ____ (growth slows to 0).
 - Equilibrium (constant) solutions are: P = 0, P = M
 - If the population starts between 0 and M: $\lim_{t\to\infty} P(t) = \underline{\qquad}$
 - Using Calc I methods, we can show that P(t) has an inflection point when $P = \frac{r}{2}$

Examples:

1. (Review of exponential growth) Solve the differential equation P' = kP.

$$\frac{dP}{dt} = kP$$

$$\frac{1}{P}dP = kdt$$

$$S = \frac{1}{P}dP = Skdt$$

$$P = \frac{1}{P}e^{\frac{k+C}{N}}$$

$$\frac{dP}{dt} = kP(1-\frac{P}{M})$$

$$\frac{1}{P(1-\frac{P}{M})}dP = kdt \cdot \frac{1}{M}$$

$$\left(\frac{1}{P(M-P)}dP\right) = \frac{k}{M}dt$$

$$\frac{1}{M} \int_{P} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{K}{M} t + C$$

$$\int_{P} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P} + \frac{1}{M-P} \right) dP = \frac{R}{M}t + C$$

$$\int_{Q} \left(\frac{1}{P}$$

Use partial Fractions to

Simplify
$$\frac{1}{P(M-P)}$$
:

$$\frac{1}{P(M-P)} = \frac{A}{P} + \frac{B}{M-P}$$

$$1 = A(M-P) + BP$$

$$OP+1 = (B-A) \cdot P + AM$$

$$\begin{cases} B-A=0 \\ AM=1 \end{cases} \implies A=\frac{1}{M}$$

$$B=\frac{1}{M}$$

$$||\frac{P}{M-P}| = kt+D$$

$$||\frac{P}{M-P}| = e^{kt+D}$$

$$||\frac{P}{M-P}| = e^{kt+D}$$

$$||\frac{P}{M-P}| = e^{kt+D}$$

$$P = \frac{1 + e^{-kt-p}}{1 + e^{-kt}}$$

$$P = \frac{M}{1 + Ae^{-kt}}$$

P(0) = P.

3. Suppose a population grows according to the logistic model with an initial population of 1000 and a carrying capacity of 10,000. If the population grows to 2500 after one Con and year, what is the population after three more years?

$$P = \frac{M}{1 + Ae^{-kt}}, A = \frac{M - P_o}{P_o}, M = 10000, P_o = 1000$$
Hence, $A = \frac{9000}{1000} = 9$,

So
$$P(E) = \frac{10000}{1 + 9e^{-kt}}$$
We know $P(1) = 2500$

$$P(1) = 2500$$

Finally,
$$P(t) = \frac{10000}{1 + 9 \cdot (\frac{1}{3})^{t}},$$

$$SO \qquad P(4) = \frac{10000}{1 + 9 \cdot (\frac{1}{3})^{4}}$$

= 9000