Background knowledge:

In the following statement, $f(x)$ is a function, $T_{n}(x)$ is its n th-degree Taylor polynomial centered at a, and the remainder $R_{n}(x)=f(x)-T_{n}(x)$.
Taylor's Inequality: If $f^{(n+1)}$ is continuous and $\left|f^{(n+1)}\right| \leq M$ between a and x, then:

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1}
$$

1. In this first example, you know the degree n of the Taylor polynomial, and the value of x, and will find a bound for how accurately the Taylor Polynomial estimates the function.
(a) Write down the 2nd degree Taylor Polynomial for $f(x)=e^{x}$ centered at $a=0$.

Solution: $\quad T_{2}(x)=\sum_{n=0}^{2} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=\frac{e^{0}}{0!}\left(x^{0}\right)+\frac{e^{0}}{1!}\left(x^{1}\right)+\frac{e^{0}}{2!}\left(x^{2}\right)=1+x+\frac{x^{2}}{2}$
(b) If we want to use the Taylor Polynomial above to estimate e, what should x be?

Solution: $e^{x}=e$ when $x=1$. So x should be 1 .
(c) Use the Taylor Polynomial from part (a) to estimate e.

Solution: $\quad e^{1} \approx T_{2}(1)=1+1+1 / 2=2.5$
(d) Find an upper bound for $f^{\prime \prime \prime}(x)$ for x between a and the value at which we are estimating the function, that is, between 0 and 1 . This is what we call M.

Solution: $f^{\prime \prime \prime}(x)=e^{x}$. Since e^{x} is increasing in x, the largest value of $f^{\prime \prime \prime}(x)$ for x between 0 and 1 occurs at the right-hand endpoint. Thus the maximum value is $e^{1}=e$. Since $e^{1}<3$, we will use $M=3$ as our upper bound.
(e) Write down the error bound for $R_{2}(x)$, filling in values for x, a, n and M. What does this say about the accuracy of your estimate in part c ?

Solution: $\quad\left|R_{2}(1)\right|=\left|f(1)-T_{2}(1)\right| \leq \frac{3}{(2+1)!}|1-0|^{2+1}=0.5$
2. In this problem you'll know the value of x and the accuracy you're going for, and you will find how large a degree n for the Taylor Polynomial is needed.
(a) Say that you want to estimate e to within 0.1. How many terms of the Taylor series do you need to add up? This time first find a bound M for $f^{(n+1)}(x)$ between a and x (notice you need to do this for arbitrary n). Then write down the error bound for $R_{n}(x)$, filling in values for x, a and M. Set this error bound to be less than 0.1 and solve for n.
Solution: $f^{(n+1)}(x)=e^{x}$ for any n, and since e^{x} is increasing in x, e^{1} is the largest value of $f^{(n)}(x)$ for x between 0 and 1. Since $e^{1}<3$, we will use $M=3$ as our upper bound. Taylor's Inequality gives us

$$
\left|R_{n}(1)\right| \leq \frac{3}{(n+1)!}|1-0|^{n+1}=\frac{3}{(n+1)!}
$$

So we need to solve

$$
\frac{3}{(n+1)!} \leq 0.1
$$

We can't solve this analytically, but a little trial and error shows that this inequality holds for $n+1 \geq 5$, thus $n \geq 4$. So we need to use at least a 4 th degree Taylor polynomial in order to guarantee an estimate within 0.1 of the true value. In fact, since $\frac{3}{5!}=.025$, our accuracy will be within .025 of the true value.
(b) Add the number of terms you found were needed to get an estimate of e to within 0.1.

Solution: $\quad T_{4}(1)=1+1+\frac{1^{2}}{2}+\frac{1^{3}}{6}+\frac{1^{4}}{24} \approx 2.71$
3. In this problem you'll know the degree n of the Taylor Polynomial and the accuracy you're going for, and you will find out how large x can be. Using the 5th degree Taylor Series for $\sin x$ centered at $a=0$ to estimate $\sin x$, how large can x be to get an estimate within $.0005 ?$

Solution: $\quad f^{(6)}(x)=-\sin x$ and since $|-\sin x| \leq 1$ for any x, we will use $M=1$ as our upper bound. Taylor's Inequality gives us $\left|R_{5}(x)\right| \leq \frac{1}{(5+1)!}|x-0|^{5+1}$, so we need to solve $\frac{\left|x^{6}\right|}{6!} \leq .0005$. Solving for x gives us $\left|x^{6}\right|<.36$, so $-(.36)^{1 / 6}<x<(.36)^{1 / 6}$, or about $-.8434<x<.8434$. The largest value of x that will give us an estimate of $\sin x$ that is within .0005 of the true value is $x=(.36)^{1 / 6}$.
4. In this problem you show that a Taylor Series for a function actually converges to the function. Show that the Taylor Series for $f(x)=\sin x$ converges to $\sin x$ for all x. This background information will be useful:

$$
\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0 \text { for all } x
$$

Outline of strategy:

- Get an upper bound M for $\left|f^{(n+1)}(x)\right|$ on the interval from a to x.

Solution: Because $\left|f^{(n+1)}(x)\right|$ is either $\sin x$ or $\cos x,\left|f^{(n+1)}(x)\right| \leq 1$ for any x, a, or n. Therefore we will use $M=1$ as our upper bound.

- Write down the nth degree error bound for $R_{n}(x)$.

Solution: $\quad\left|R_{n}(x)\right| \leq \frac{1}{(n+1)!}|x-a|^{n+1}$

- Take the limit of this bound for $R_{n}(x)$ as $n \rightarrow \infty$, show it is 0 , for all x.

Solution: $\lim _{n \rightarrow \infty} \frac{|x-a|^{n+1}}{(n+1)!}=0 \quad$ (By the background info in the box above)

- State the conclusion:

Solution: Therefore the Taylor series for $f(x)=\sin x$ centered at $a=0$ converges, and further, as we hoped and expected, we now know that it converges to $\sin x$ for all x.

More practice:
5. (a) Find the Taylor Series directly (using the formula for Taylor Series) for $f(x)=\ln (x+1)$, centered at $a=0$.

Solution: (Details of the work are not shown in this answer.)
$T(x)=\frac{\ln (0+1)}{0!}\left(x^{0}\right)+\frac{(0+1)^{-1}}{1!}\left(x^{1}\right)+\frac{-(0+1)^{-2}}{2!}\left(x^{2}\right)+\frac{-2(0+1)^{-3}}{3!}\left(x^{3}\right) \ldots=$ $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}$
(b) How accurate will the estimate be if we use this series to estimate $\ln 4$ with $n=5$?

Solution: To estimate $\ln 4$, we use $x=3$. Taking derivatives, we find the pattern $\left|f^{(n+1)}(x)\right|=n!\cdot(x+1)^{-(n+1)}$. So $\left|f^{(5+1)}(x)\right|=5!\cdot(x+1)^{-(5+1)}$. This is a decreasing function, so its maximum value between $a=0$ and $x=3$ occurs at the left-hand endpoint of the interval $[0,3]$. We see that $\left|f^{(5+1)}(x)\right|=5!\cdot(x+1)^{-(5+1)}$ is bounded by 5 !. So the error is bounded by $\left|R_{5}(3)\right| \leq \frac{5!}{6!} 3^{6}=121.5$. This is not very accurate!
(c) Show that this series converges to $\ln (x+1)$ on the interval $\left(-\frac{1}{2}, \frac{1}{2}\right)$. Note: do not use the ratio test, since it only shows convergence of the series, not convergence to the correct function. Instead, show that the limit of the error term is 0 .

Solution: Taking derivatives, we find the pattern $\left|f^{(n+1)}(x)\right|=n!\cdot(x+1)^{-(n+1)}$. No matter what n is, this is a decreasing function, so its maximum on the interval $-\frac{1}{2}<x<\frac{1}{2}$ occurs at the left-hand endpoint, $x=-\frac{1}{2}$. This gives $M=\left|f^{(n+1)}(-1 / 2)\right|=2^{n+1} n$!
So $\left|R_{n}(x)\right| \leq \frac{2^{n+1} n!}{(n+1)!}|x|^{n+1}=\frac{2^{n+1}}{n+1}|x|^{n+1}$.
Since $-\frac{1}{2}<x<\frac{1}{2}$, we now have $\left|R_{n}(x)\right| \leq \frac{2^{n+1}}{n+1}|1 / 2|^{n+1}=\frac{1}{n+1}$.
$\lim _{n \rightarrow \infty} \frac{1}{n+1}=0$ and therefore the series converges to $\ln (x+1)$ on the interval $\left(-\frac{1}{2}, \frac{1}{2}\right)$.
(Note: You could also show this by showing the alternating series error (that is, the next term in the series) goes to zero.)
(d) For $x=\frac{1}{4}$, what degree Taylor polynomial do we need to use to guarantee an approximation correct to within 4 decimal places (that is, to within .00005)?
Solution: $\quad\left|f^{(n+1)}(x)\right|=n!\cdot(x+1)^{-(n+1)}$, so between $a=0$ and $x=1 / 4$,

$$
\left|f^{(n+1)}(x)\right| \leq n!
$$

Therefore,

$$
\left|R_{n}(x)\right| \leq \frac{n!}{(n+1)!}|1 / 4|^{n+1}=\frac{1}{n+1}|1 / 4|^{n+1}
$$

Solving $\frac{1}{n+1}|1 / 4|^{n+1} \leq .00005$ gives us $n \geq 5$. So we need to use a Taylor polynomial of at least the 5th degree to get an approximation correct to within 4 decimal places.
(Note: This could also be found using the alternating series error term.)
6. Show that the 6 th degree Taylor Polynomial for $\cos x$, centered at 0 , gives values which are accurate to at least four decimal places (to within .00005) if $|x|<1$.

Solution: Because $\left|f^{(n+1)}(x)\right|$ is either $\sin x$ or $\cos x, 0 \leq\left|f^{(n+1)}(x)\right| \leq 1$ for any x or n. Therefore we will use $M=1$ as our upper bound. Using the fact that $|x|<1$, we have

$$
\left|R_{6}(x)\right| \leq \frac{1}{(6+1)!}|x-0|^{6+1} \leq \frac{1}{7!}|1|^{7} \leq .0002
$$

Not good enough! I notice something very tricky: The 6th degree and 7 th degree T.P. for $\cos x$ are the same! So the error in the 6 th degree T.P. is the same as the error for the 7 th degree. I can still use $M=1$.

$$
\left|R_{6}(x)\right|=\left|R_{7}(x)\right| \leq \frac{1}{(7+1)!}|x-0|^{6+1} \leq \frac{1}{8!}|1|^{7} \leq .0000249<.00005
$$

7. Find $\sin \left(35^{\circ}\right)$ to within 3 decimal places (to within .0005$)$. Note that you have options here about where to place the center a.

Solution: We'll estimate this using $a=0$, but it could also be done by centering about $a=30^{\circ}=\frac{\pi}{6}$. First, we need to use radians, so we're going to approximate $\sin (7 \pi / 36)$.
Second, we need to know what degree Taylor polynomial we should use to guarantee accuracy to within .0005 . Because $\left|f^{(n+1)}(x)\right|$ is either $\sin x$ or $\cos x, 0 \leq\left|f^{(n+1)}(x)\right| \leq 1$ for any x, a, or n. Therefore we will use $M=1$ as our upper bound, regardless of what n is.
If we use $a=0$, then

$$
\left|R_{n}(7 \pi / 36)\right| \leq \frac{1}{(n+1)!}|7 \pi / 36|^{n+1}
$$

We need to solve $\frac{1}{(n+1)!}|7 \pi / 36|^{n+1} \leq .0005$ for n. We can't solve this analytically, but trial and error shows that the answer is $n \geq 5$.

Therefore

$$
T_{5}(7 \pi / 36)=(7 \pi / 36)-\frac{(7 \pi / 36)^{3}}{3!}+\frac{(7 \pi / 36)^{5}}{5!} \approx 0.57358
$$

estimates $\sin \left(35^{\circ}\right)$ to within 3 decimal places.

