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Math 2300 Building new series from the Geometric Series

Goal: If we know that a power series converges to a specific function, we can manipulate the
equation to determine the limits of new power series. This is a nifty and fast way to get lots of new
power series representations of functions. Today we will manipulate power series in these ways:

e Substitute
e Multiply by z
e Differentiate

e Integrate
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1. Write down a power series representation for the function f(z) = 1= by using the fact
that the geometric series g ar™ = TP Write your answer in both expanded form and
-7
Y-notation. On what interval does the series converge to the function?
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2. Using your response for the last problem, substituting —z in the place of z, find the power
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series represgntation for f(z) = Trn Write your answer in both expanded form and -
notation. On what interval does the series converge to the function?
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3. Find the power series representation for f(z) = T a2 Write your answer in both expanded

form and Y-notation. On what interval does the series converge to the function?
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4. Find the power series representation for 1 . (Hint: multiply answer to problem 1 by z.)

On what interval does the series converge to the function?
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5. Find the power series representation for (1—1;—)2 On what interval does the series converge
to the function? Hint: Take the derivative of both sides of this equation:
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6. Find the power series representation of arctan z. (Hint: start with the power series for T
z
“and antidifferentiate. Solve for the constant of integration by substituting z = 0.) On what

interval does the series converge to the function?
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