1 Graphing in Polar Coordinates

1. Use the function $r=\cos \left(\frac{1}{\theta}\right)$ to graph the following:

(a) When $\theta=\frac{2}{\pi}, r=$
(d) When $\theta=\pi, r=$
(b) When $\theta=\frac{4}{\pi}, r=$
(e) When $\theta=2 \pi, r=$
(c) When $\theta=\frac{6}{\pi}, r=$
(f) the arc of the polar function where $\frac{2}{\pi} \leq \theta \leq 2 \pi$
2. Use the function $r=\frac{1}{\theta}$ to graph the following:
(a) When $\theta=\frac{1}{10}, r=$
(d) When $\theta=\frac{\pi}{3}, r=$
(b) When $\theta=\frac{\pi}{6}, r=$
(e) When $\theta=\pi, r=$
(c) When $\theta=\frac{\pi}{4}, r=$
(f) When $\theta=2 \pi, r=$
(g) the arc of the polar function where $\frac{1}{10} \leq \theta \leq 2 \pi$.

2 Identifying Areas

1. Graph the function $r_{1}=\cos (5 \theta)$.

2. Find all values of θ for which $r_{1}=0$. What bounds could you use for θ to set up an integral that will give you the area of 1 petal?

Is r_{1} positive or negative on this region?
3. Suppose you want to find the area inside the petals, but outside the circle $r_{2}=\frac{1}{2}$. Find all values of θ for which $r_{1}=\frac{1}{2}$.

Add the circle $r_{2}=\frac{1}{2}$ to the graph above. Then shade in the area you are interested in finding.
What bounds could you use to set up an integral that will give you the area?

3 Calculating Areas

1. Set up and evaluate the integral that will give you the area swept out by $r=\frac{1}{\theta}$, with $\frac{1}{10} \leq \theta \leq 2 \pi$.
2. Set up, but do not evaluate, the integral that will give you the area inside $r=\cos (3 \theta)$ and outside the circle $r=\frac{1}{2}$.
3. Use a calculator to find $\frac{1}{2} \int_{-\pi / 6}^{\pi / 6} \cos ^{2}(3 \theta) d \theta$ and $\frac{1}{2} \int_{\pi / 6}^{\pi / 2} \cos ^{2}(3 \theta) d \theta$. What do these integrals represent? Explain why you get the values you do.

4 Calculating Arclength

1. Set up, but do not evaluate, the integral that will give you arclength of $r=\frac{1}{\theta}$, with $\frac{1}{10} \leq \theta \leq 2 \pi$.
2. Find the value of the previous integral using a calculator.
3. Set up and simplify, but do not evaluate, the integral that will give you the area swept out by $r=\cos (\theta)$, with $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$.
4. Use a calculator to find $\int_{-\pi / 2}^{\pi / 2} \sqrt{4 \cos ^{2}(\theta) \sin ^{2}(\theta)+1} d \theta, \int_{\pi / 2}^{3 \pi / 2} \sqrt{4 \cos ^{2}(\theta) \sin ^{2}(\theta)+1} d \theta$, and $\int_{0}^{2 \pi} \sqrt{4 \cos ^{2}(\theta) \sin ^{2}(\theta)+1} d \theta$. Interpret the results.
5. Find the arclength of the following curve, from $t=0$ to $t=\ln 6$.

$$
\begin{aligned}
x(t) & =e^{t} \cos (\sqrt{8} t) \\
y(t) & =e^{t} \sin (\sqrt{8} t)
\end{aligned}
$$

