Sequences that converge to 0

Solution: cards labled with multiples of two.
(2) $\frac{5}{2 n+1} \rightarrow 0$
(4) $\frac{e^{n}}{n!} \rightarrow 0$
(8) $\sin \left(\frac{1}{n}\right) \rightarrow 0$
(16) $\frac{(-1)^{n} n}{e^{n}} \rightarrow 0$
(22) $\frac{\sin n^{2}}{\sqrt{n}} \rightarrow 0$
(26) $\frac{(-1)^{n} n^{4}}{n!} \rightarrow 0$
(34) $\frac{n 8^{n}}{3^{2 n+1}} \rightarrow 0$.

Sequences that converge, but not to 0

Solution: cards labled with multiples of three.
(3) $\quad \cos \left(\frac{n}{n^{2}}\right) \rightarrow 1$
(9) $\left(1+\frac{1}{n}\right)^{n} \rightarrow e$
(27) $\frac{\ln n}{\ln \left(n^{2}\right)} \rightarrow \frac{1}{2}$
(33) $\frac{\sqrt{n^{2}+1}}{3 n-1} \rightarrow \frac{1}{3}$.

Sequences that diverge to ∞

Solution: cards labled with multiples of five.
(5) $\frac{n}{\ln n} \rightarrow \infty$
(25) $\frac{10^{n}}{n 5^{n}} \rightarrow \infty$
(55) $\frac{n^{2}}{n \ln n} \rightarrow \infty$
(85) $\frac{e^{n}}{\sqrt{n}} \rightarrow \infty$.

Sequences that diverge, but not to ∞

Solution: cards labled with multiples of seven.
(7) $\frac{3 n^{3}+n}{1-4 n^{2}} \rightarrow-\infty$
(49) $\frac{(-1)^{n} 2^{n}}{n^{4}}$ diverges, but not to $\pm \infty$
(77) $\frac{(-1)^{n} n^{2}}{n^{2}+1}$ diverges, but not to $\pm \infty$.

