Goal: An introduction to the idea of recursively defined sequences, meaning: sequences where each term is defined by a formula involving the previous term (or terms).

1. Sometimes sequences can be described recursively in addition to their more familiar explicit forms.
(a) Consider the sequence defined by $a_{1}=5, \quad a_{n}=a_{n-1}+3$. Write down the first 5 terms of the sequence. Identify what type of sequence it is, and find an explicit formula for a_{n}.
(b) Now look at the sequence defined by $a_{1}=3, \quad a_{n}=2 a_{n-1}$. Write down the first 5 terms of the sequence. Identify what type of sequence it is, and find an explicit formula for a_{n}.
(c) Now look at the sequence defined by $a_{1}=5, \quad a_{n}=n a_{n-1}$. Write down the first 5 terms of the sequence. Identify what type of sequence it is, and find an explicit formula for a_{n}.
2. A sequence that is increasing and bounded above must converge. A sequence that is decreasing and bounded below also must converge. Draw a picture and explain intuitively why this must be so.
3. Suppose that the sequence a_{n} converges and that $\lim _{n \rightarrow \infty} a_{n}=L$. Does the sequence a_{n+1} converge, and if so what is $\lim _{n \rightarrow \infty} a_{n+1}$? Explain.
4. Consider the recursive sequence defined by $a_{1}=\sqrt{2}, \quad a_{n+1}=\sqrt{2+a_{n}}$
(a) Write out the first 4 terms, and calculate their approximate values.
(b) Every term in this sequence is bounded above by 2. For example, let's look at a_{4}. Explain why $a_{4}=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}<\sqrt{2+\sqrt{2+\sqrt{2+2}}}$, then simplify to show $a_{4}<2$.
(c) Now show that a_{n} is increasing by showing that $a_{n+1}>a_{n}$. You'll need to use the fact that $2>a_{n}$.

$$
a_{n+1}=\sqrt{2+a_{n}}>
$$

(d) Explain why a_{n} must converge.
(e) Now we will figure out what it converges to. Let's give a name to its limit, $\lim _{n \rightarrow \infty} a_{n}=L$. Take the limit of both sides of the equation below, and solve for L.

$$
a_{n+1}=\sqrt{2+a_{n}}
$$

5. Here's another recursively defined sequence $\left\{F_{n}\right\}$, called the sequence of Fibonacci numbers (which are purported to show up in nature, science, art, architecture, etc.):

$$
\begin{aligned}
& F_{1}=1, \quad F_{2}=1, \quad F_{3}=F_{1}+F_{2}=1+1=2, \quad F_{4}=F_{2}+F_{3}=1+2=3, \ldots, \\
& F_{n}=F_{n-2}+F_{n-1} .
\end{aligned}
$$

That is, the first two terms are by definition set equal to 1 , and each subsequent term is the sum of the previous two.
(a) Compute and write down, $F_{5}, F_{6}, F_{7}, F_{8}, F_{9}$, and F_{10}.
(b) Does $\lim _{n \rightarrow \infty} F_{n}$ look like it exists? If so, what do you think this limit is? If not, why not?
(c) Now let's look at the sequence $\left\{R_{n}\right\}$ of ratios of successive Fibonacci numbers:

$$
\begin{aligned}
& R_{1}=\frac{F_{2}}{F_{1}}=\frac{1}{1}=1, \quad R_{2}=\frac{F_{3}}{F_{2}}=\frac{2}{1}=2, \quad R_{3}=\frac{F_{4}}{F_{3}}=\frac{3}{2}=1.5, \\
& R_{4}=\frac{F_{5}}{F_{4}}=\frac{5}{3}=1.666 \ldots, \quad R_{n}=\frac{F_{n+1}}{F_{n}} .
\end{aligned}
$$

Find the approximate value of $R_{5}, R_{6}, R_{7}, R_{8}$, and R_{9}.
(d) Does $\lim _{n \rightarrow \infty} R_{n}$ look like it exists? If so, what do you think this limit is? If not, why not?
(e) Let's assume for now that $\lim _{n \rightarrow \infty} R_{n}$ exists and is non-zero: let's denote this limit by L. We're going to sneakily compute L. Here's how: start with the equation

$$
F_{n}=F_{n-2}+F_{n-1}
$$

defining the Fibonacci numbers. Divide both sides by F_{n-1}. This should give you an equation relating R_{n-1} and R_{n-2}. Write down a simplified version of this equation.
(f) Now, take the limit of both sides of your above equation. What equation do you get, in terms of the limit L ? (Hint: if the R_{n} 's have a limit, then whatever they tend to as $n \rightarrow \infty, R_{n-1}$ and R_{n-2} should tend to the same thing.)
(g) Now, solve your above equation for L. (Some hints: (a) you may want to first do some algebra, and then apply the quadratic formula. (b) This will give you two possible solutions; why can you disregard one of them?)
(h) Does the series $\sum_{n=1}^{\infty} \frac{1}{F_{n}}$ converge or diverge?

