Term-size Comparison Test: necessary components for a complete solution:

- Define a_{n}, and make a good choice for b_{n} to compare to.
- Confirm that both $a_{n} \geq 0$ and $b_{n} \geq 0$.
- Determine which is larger, a_{n} or b_{n}.
- Determine the convergence/divergence of $\sum b_{n}$ (with a reason).
- Make a conclusion about the convergence/divergence of $\sum a_{n}$ (with a reason).

Example: Determine if $\sum_{n=2}^{\infty} \frac{n+2}{n^{2}-1}$ converges or diverges.
Sample of full solution:

- Let $a_{n}=\frac{n+2}{n^{2}-1}$. The dominant term in the numerator is n and the dominant term in the denominator is n^{2}. So I choose $b_{n}=\frac{n}{n^{2}}=\frac{1}{n}$.
- Both series are positive for $n \geq 2$.
- $a_{n}=\frac{n+2}{n^{2}-1}>\frac{n}{n^{2}-1}>\frac{n}{n^{2}}=\frac{1}{n}=b_{n}$. So $a_{n}>b_{n}$.
- $\sum_{n=2}^{\infty} b_{n}$ diverges (it is a p-series with $p=1$).
- $\sum_{n=2}^{\infty} \frac{n+2}{n^{2}-1}$ diverges by the Term-size Comparison test.

1. Determine if $\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{n^{3}+n}$ converges or diverges.

Limit Comparison Test: necessary components for a complete solution:

- Define a_{n}, and make a good choice for b_{n} to compare to.
- Confirm that both $a_{n} \geq 0$ and $b_{n} \geq 0$.
- Calculate $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$. Confirm that L is positive and finite.
- Determine the convergence/divergence of $\sum b_{n}$ (with a reason).
- Make a conclusion about the convergence/divergence of $\sum a_{n}$ (with a reason).

Example: Determine if $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^{5}+n-1}}$ converges or diverges.
Sample of full solution:

- Let $a_{n}=\frac{n}{\sqrt{n^{5}+n-1}}$. The dominant term in the numerator is n and the dominant term in the denominator is $n^{5 / 2}$. So I choose $b_{n}=\frac{n}{n^{5 / 2}}=\frac{1}{n^{3 / 2}}$.
- Both series are positive for $n \geq 1$.
- $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{n}{\sqrt{n^{5}+n-1}}}{\frac{1}{n^{3 / 2}}}=\lim _{n \rightarrow \infty} \frac{n \cdot n^{3 / 2}}{\sqrt{n^{5}+n-1}}=\lim _{n \rightarrow \infty} \frac{n^{5 / 2}}{\sqrt{n^{5}+n-1}}$
$=\lim _{n \rightarrow \infty} \frac{\sqrt{n^{5}}}{\sqrt{n^{5}+n-1}}=\lim _{n \rightarrow \infty} \sqrt{\frac{n^{5}}{n^{5}+n-1}}=\lim _{n \rightarrow \infty} \sqrt{\frac{n^{5} \cdot \frac{1}{n^{5}}}{\left(n^{5}+n-1\right) \cdot \frac{1}{n^{5}}}}$
$=\lim _{n \rightarrow \infty} \sqrt{\frac{1}{1+\frac{1}{n^{4}}-\frac{1}{n^{5}}}}=1$. The limit is positive and finite.
- $\sum_{n=1}^{\infty} b_{n}=\sum \frac{1}{n^{3 / 2}}$ converges (p-series, with $p=\frac{3}{2}>1$).
- By the Limit Comparison test, $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^{5}+n-1}}$ also converges.

2. Determine if $\sum_{n=1}^{\infty} \frac{2 n-1}{n^{2}+3 n}$ converges or diverges.
