Term-size Comparison Test: necessary components for a complete solution:

- Define a_n , and make a good choice for b_n to compare to.
- Confirm that both $a_n \ge 0$ and $b_n \ge 0$.
- Determine which is larger, a_n or b_n .
- Determine the convergence/divergence of $\sum b_n$ (with a reason).
- Make a conclusion about the convergence/divergence of $\sum a_n$ (with a reason).

Example: Determine if $\sum_{n=2}^{\infty} \frac{n+2}{n^2-1}$ converges or diverges.

Sample of full solution:

- Let $a_n = \frac{n+2}{n^2-1}$. The dominant term in the numerator is n and the dominant term in the denominator is n^2 . So I choose $b_n = \frac{n}{n^2} = \frac{1}{n}$.
- Both series are positive for $n \ge 2$.
- $a_n = \frac{n+2}{n^2-1} > \frac{n}{n^2-1} > \frac{n}{n^2} = \frac{1}{n} = b_n$. So $a_n > b_n$.
- $\sum_{n=2}^{\infty} b_n$ diverges (it is a *p*-series with p = 1).
- $\sum_{n=2}^{\infty} \frac{n+2}{n^2-1}$ diverges by the Term-size Comparison test.
- 1. Determine if $\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^3 + n}$ converges or diverges.

Limit Comparison Test: necessary components for a complete solution:

- Define a_n , and make a good choice for b_n to compare to.
- Confirm that both $a_n \ge 0$ and $b_n \ge 0$.
- Calculate $\lim_{n\to\infty} \frac{a_n}{b_n} = L$. Confirm that L is positive and finite.
- Determine the convergence/divergence of $\sum b_n$ (with a reason).
- Make a conclusion about the convergence/divergence of $\sum a_n$ (with a reason).

Example: Determine if $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^5 + n - 1}}$ converges or diverges. Sample of full solution:

- Let $a_n = \frac{n}{\sqrt{n^5 + n 1}}$. The dominant term in the numerator is n and the dominant term in the denominator is $n^{5/2}$. So I choose $b_n = \frac{n}{n^{5/2}} = \frac{1}{n^{3/2}}$.
- Both series are positive for $n \ge 1$.

•
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{n}{\sqrt{n^5 + n - 1}}}{\frac{1}{n^{3/2}}} = \lim_{n \to \infty} \frac{n \cdot n^{3/2}}{\sqrt{n^5 + n - 1}} = \lim_{n \to \infty} \frac{n^{5/2}}{\sqrt{n^5 + n - 1}}$$
$$= \lim_{n \to \infty} \frac{\sqrt{n^5}}{\sqrt{n^5 + n - 1}} = \lim_{n \to \infty} \sqrt{\frac{n^5}{n^5 + n - 1}} = \lim_{n \to \infty} \sqrt{\frac{n^5 \cdot \frac{1}{n^5}}{(n^5 + n - 1) \cdot \frac{1}{n^5}}}$$
$$= \lim_{n \to \infty} \sqrt{\frac{1}{1 + \frac{1}{n^4} - \frac{1}{n^5}}} = 1.$$
 The limit is positive and finite.

- $\sum_{n=1}^{\infty} b_n = \sum \frac{1}{n^{3/2}}$ converges (*p*-series, with $p = \frac{3}{2} > 1$).
- By the Limit Comparison test, $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^5 + n 1}}$ also converges.
- 2. Determine if $\sum_{n=1}^{\infty} \frac{2n-1}{n^2+3n}$ converges or diverges.