1. Plot each of the following points on the graph below:

- 2. Convert (2, -2) to polar coordinates. Give two possible answers.
- 3. Give rectangular coordinates for these points:
 - (a) $(r, \theta) = (3, \frac{5\pi}{4})$

(b)
$$(r, \theta) = (-4, \frac{11\pi}{6})$$

- 4. Convert the following to rectangular coordinates:
 - (a) r = 8
 - (b) $r = 2 \sec \theta$
- 5. Convert the following to polar coordinates:
 - (a) $x^2 + y^2 = 25$
 - (b) y = 2x

- (a) $r = 2 + 2\cos\theta$ $\pi/2$ π π π 0
 - $3\pi/2$

6. Graph the following polar equations. Note any values of θ where the graph hits the origin.

7. Shade the region that lies inside both of the curves $r = 1 + \sin \theta$ and $r = 3 \sin \theta$. Find the intersection points.

