1. Plot each of the following points on the graph below:
(a) $(r, \theta)=\left(3, \frac{7 \pi}{6}\right)$
(b) $(r, \theta)=\left(2,-\frac{3 \pi}{4}\right)$
(c) $(r, \theta)=\left(-1, \frac{5 \pi}{4}\right)$
(d) $(r, \theta)=(4, \pi)$

2. Convert $(2,-2)$ to polar coordinates. Give two possible answers.
3. Give rectangular coordinates for these points:
(a) $(r, \theta)=\left(3, \frac{5 \pi}{4}\right)$
(b) $(r, \theta)=\left(-4, \frac{11 \pi}{6}\right)$
4. Convert the following to rectangular coordinates:
(a) $r=8$
(b) $r=2 \sec \theta$
5. Convert the following to polar coordinates:
(a) $x^{2}+y^{2}=25$
(b) $y=2 x$
6. Graph the following polar equations. Note any values of θ where the graph hits the origin.
(a) $r=2+2 \cos \theta$

(b) $r=1+2 \cos \theta$

(c) $r=3 \sin 2 \theta$

7. Shade the region that lies inside both of the curves $r=1+\sin \theta$ and $r=3 \sin \theta$. Find the intersection points.

