Goal: If we know that a power series converges to a specific function, we can manipulate the equation to determine the limits of new power series. This is a nifty and fast way to get lots of new power series representations of functions. Today we will manipulate power series in these ways:

- Substitute
- Multiply by x
- Differentiate
- Integrate

1. Write down a power series representation for the function $f(x)=\frac{1}{1-x}$ by using the fact that the geometric series $\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}$. Write your answer in both expanded form and Σ-notation. On what interval does the series converge to the function?
Solution: Letting $r=x$ and $a=1$ in the geometric series formula, we get

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots+x^{n}+\ldots=\sum_{n=0}^{\infty} x^{n}
$$

From the Geometric Series Test, the equality is true for $-1<x<1$.
2. Using your response for the last problem, substituting $-x$ in the place of x, find the power series representation for $f(x)=\frac{1}{1+x}$. Write your answer in both expanded form and Σ notation. On what interval does the series converge to the function?

Solution:

$$
\frac{1}{1+x}=1-x+x^{2}-x^{3}+\ldots+(-1)^{n} x^{n}+\ldots=\sum_{n=0}^{\infty}(-1)^{n} x^{n}
$$

From the Geometric Series test, we require $|-x|<1$, so $-1<x<1$.
3. Find the power series representation for $f(x)=\frac{1}{1+x^{2}}$. Write your answer in both expanded form and Σ-notation. On what interval does the series converge to the function?

Solution:

$$
\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\ldots+(-1)^{n} x^{2 n}+\ldots=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
$$

From the Geometric Series test, we require $\left|-x^{2}\right|<1$, so $-1<x<1$.
4. Find the power series representation for $\frac{x}{1-x}$. (Hint: multiply answer to problem 1 by x.) On what interval does the series converge to the function?
Solution: We start with $\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots+x^{n}+\ldots=\sum_{n=0}^{\infty} x^{n}$, so $\frac{x}{1-x}=x+x^{2}+x^{3}+\ldots+x^{n+1}+\ldots=\sum_{n=0}^{\infty} x^{n+1}$. Multiplying by x does not change the interval on which the equality holds, so the interval is $-1<x<1$.
5. Find the power series representation for $\frac{1}{(1-x)^{2}}$. On what interval does the series converge to the function? Hint: Take the derivative of both sides of this equation:

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots+x^{n}+\ldots=\sum_{n=0}^{\infty} x^{n}
$$

Solution: $\quad \frac{d}{d x}\left(\frac{1}{1-x}\right)=\frac{1}{(1-x)^{2}}$. Now we'll take the derivative of $1+x+x^{2}+x^{3}+\ldots+$ $x^{n}+\ldots$ term-by-term. We get

$$
\frac{1}{(1-x)^{2}}=0+1+2 x+3 x^{2}+4 x^{3}+\ldots+n x^{n-1}+\ldots=\sum_{n=1}^{\infty} n x^{n-1}
$$

Notice that the index on the summation starts at $n=1$ now (the first term is gone, since it was the derivative of a constant). Differentiating does not change the radius of the interval, so we still have $-1<x<1$.
6. Find the power series representation of $\arctan x$. (Hint: start with the power series for $\frac{1}{1+x^{2}}$ and antidifferentiate. Solve for the constant of integration by substituting $x=0$.) On what interval does the series converge to the function?
Solution: From problem $3, \frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\ldots+(-1)^{n} x^{2 n}+\ldots=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$. Antidifferentiating both sides gives:

$$
\arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots+\frac{(-1)^{n} x^{2 n+1}}{2 n+1}+\ldots+C=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}+C
$$

Now substitute $x=0$ into both sides, recalling that $\arctan 0=0$:

$$
0=0-0+0 \ldots+C
$$

So $C=0$. We have:

$$
\arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots+\frac{(-1)^{n} x^{2 n+1}}{2 n+1}+\ldots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}
$$

Anti-differentiating does not change the radius of the interval, so we still have $-1<x<1$.

