
Math 2300: Calculus II Project: The Harmonic Series, the Integral Test

1. Let’s start with the sequence an = 1
n . Does this sequence converge or diverge? Explain.

2. Now consider this infinite series (called the harmonic series):

1 +
1

2
+

1

3
+

1

4
+

1

5
+ ...

(a) Write this series in summation notation.

(b) Now consider this series numerically. Calculate the following partial sums:
1∑

n=1

1

n
= 1

2∑
n=1

1

n
=

3

2
= 1.5

3∑
n=1

1

n
≈ 1.833

4∑
n=1

1

n
≈ 2.083

10∑
n=1

1

n
≈ 2.929

100∑
n=1

1

n
≈ 5.187

1000∑
n=1

1

n
≈ 7.48

(c) Recall that convergence of an infinite series is determined by taking the limit of the
partial sums. In other words,

∞∑
n=1

1

n
= lim

m→∞

m∑
n=1

1

n

If the limit is finite, we say the infinite series converges, otherwise we say it diverges.
Using what you calculated in part(b) of this problem, make a conjecture about whether
or not the harmonic series converges.
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3. The next part of the project introduces the concept of the Integral Test to show a series
diverges.

(a) Every series can be depicted graphically. Write down a sum that gives the area of the
shaded region below. How does this sum relate to the harmonic series?

1 2 3 4 5 6

1/5
1/4

1/3

1/2

1

(b) The advantage of representing a series this way is that it can be compared to an improper
integral. On the above graph, carefully draw the function f(x) = 1

x .

(c) How does the harmonic series
∞∑
n=1

1

n
compare to the improper integral

∫ ∞

1

1

x
dx?

(d) Does the improper integral

∫ ∞

1

1

x
dx converge or diverge? Calculate it, as a review of

improper integrals.

(e) What can you conclude about the convergence of the harmonic series

∞∑
n=1

1

n
?
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4. In the previous problem we compared an infinite series to an improper integral to show
divergence of the infinite series. By shifting to the left where we draw the rectangles, we can
compare an infinite series to an improper integral to show convergence of the series.

(a) Write down a sum that gives the area of the shaded region below. How does this sum

relate to the series

∞∑
n=1

1

n2
?

1 2 3 4 5 6

1/25
1/16

1/9

1/4

1

(b) On the above graph, carefully draw the function f(x) = 1
x2 .

(c) How does the series

∞∑
n=2

1

n2
compare to the improper integral

∫ ∞

1

1

x2
dx?

(d) Does the improper integral

∫ ∞

1

1

x2
dx converge or diverge? Calculate it, as a review of

improper integrals.

(e) What can you conclude about the convergence of the series

∞∑
n=2

1

n2
, and thus about the

series
∞∑
n=1

1

n2
?
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5. In problems 3 and 4 we compared infinite series to improper integrals in order to make
conclusions about the convergence of divergence of the infinite series. Here is the general
result:

The Integral Test: Suppose f is a continuous, positive, decreasing function on [1,∞) and

let an = f(n). Then the series
∞∑
n=1

an is convergent if and only if the improper integral∫ ∞

1
f(x) dx converges. In other words:

• if we know

∫ ∞

1
f(x) dx converges, then we know

∞∑
n=1

an converges .

• if we know

∫ ∞

1
f(x) dx diverges, then we know

∞∑
n=1

an diverges .

6. Why do you think we need f(x) to be decreasing? Think about what might go wrong with
the geometrical argument if f(x) isn’t decreasing.

7. Now we’ll apply the Integral Test in an example. Determine whether
∞∑
n=1

1

n2 + 1
converges

or diverges by following these steps:

an =
1

n2 + 1
; so let f(x) =

1

x2 + 1

f(x) is decreasing because: (Hint: find f ′(x))

Check that f(x) is positive:
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We’ve fulfilled the hypotheses of the integral test, so we can conclude that
∞∑
n=1

1

n2 + 1
and∫ ∞

1

1

x2 + 1
dx either both converge or both diverge.

Integrate to determine whether

∫ ∞

1

1

x2 + 1
dx converges or diverges:

∫ ∞

1

1

x2 + 1
dx converges , and therefore

∞∑
n=1

1

n2 + 1
also converges .

8. Use the integral test to determine whether

∞∑
n=2

1

n lnn
converges or diverges.
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