Background info, approximating $\int_{a}^{b} f(x) dx$.

For each method, the subintervals are uniform. That is, $a = x_0$, $b = x_n$, and $\Delta x = \frac{b-a}{n}$.

 $L_n = \Delta x [f(x_0) + f(x_1) + \dots + f(x_{n-1})]$

Simpson's rule (note, *n* must be even). Simpson's rule uses sections of parabolas to estimate areas. For more about this image see http://www.maa.org/publications/periodicals/loci/joma/estimating-the-area-of-virginia-using-simpsons-rule

1. Values of f(x) are given in the table below:

x	5	7	9	11	13	15	17
f(x)	-2	0	1	3	4	5	8

Estimate $\int_{5}^{17} f(x) dx$ using the following methods, if possible.

With n = 3, $L_n =$

Solution: 4(-2+1+4) = 12

With n = 6, $R_n =$

Solution: 2(0+1+3+4+5+8) = 42

With n = 6, $T_n =$

Solution: $\frac{2}{2}(-2+2\cdot 0+2\cdot 1+2\cdot 3+2\cdot 4+2\cdot 5+8)=32$

With n = 6, $M_n =$

Solution: Not possible with the given information. We don't know the values of the function at the 6 midpoints.

With n = 3, $M_n =$

Solution: 4(0+3+5) = 32

With n = 3, $S_n =$

Solution: Not possible because n is odd.

With $n = 6, S_n =$

Solution: $\frac{2}{3}(-2+4\cdot 0+2\cdot 1+4\cdot 3+2\cdot 4+4\cdot 5+8)=32$

2. a. Examples of L_n . Please draw rectangles for n = 2.

b. Examples of R_n . Please draw rectangles for n = 2.

c. Examples of T_n . Please draw trapezoids for n = 2.

2. d. Examples of M_n , with n = 2.

By 'rotating' the top edge of the rectangles of a Midpoint approximation, we can draw them as trapezoids.

When f(x) is <u>concave down</u>, M_n is an overestimate.

When f(x) is concave up , M_n is an underestimate.

3. For f(x) shown below, put L_n , R_n , M_n , T_n and $\int_a^b f(x) dx$ in order from smallest to largest.

Solution: Since the graph is increasing, we know that L_n is less than $\int_a^b f(x) dx$ and R_n is greater than $\int_a^b f(x) dx$. Since the graph is concave up, we know that M_n is less than $\int_a^b f(x) dx$ and T_n is greater than $\int_a^b f(x) dx$. To see which of L_n and M_n is larger, consider the rectangles we drew to represent the areas for each of them. Since the function is increasing the rectangles for L_n are shorter than the rectangles for M_n , so $L_n < M_n$. To see which of T_n and R_n is greater, notice that since the function is increasing, the trapezoids for T_n all lie within the rectangles for R_n , so $T_n < R_n$.

Background info, error bounds (see p.405 in the textbook).

Suppose $|f''(x)| \leq k$ for $a \leq x \leq b$. If E_T and E_M are the errors in the trapezoidal and midpoint approximations, then

$$|E_T| \le \frac{k(b-a)^3}{12n^2}$$
 and $|E_M| \le \frac{k(b-a)^3}{24n^2}$

Example 1: If we use the trapezoidal approximation with n = 10 to estimate $\int_{1}^{3} x^{3} dx$, how accurate are we guaranteed to be? (If you want, make a guess before you do the calculation.)

- $f(x) = x^3$ $f'(x) = \underline{3x^2}$
- f''(x) = 6x

On [1,3], $|f''(x)| \leq 18$, because f''(x) is increasing, max is at the right end point, f(3) = 18.

So,
$$|E_T| \leq \frac{18 \cdot 2^3}{12 \cdot 10^2} = .12$$
 (Is this more or less accurate than you guessed?)

Example 2: If we use the midpoint approximation with n = 20 to estimate $\int_0^1 \sin(2x) dx$, how accurate are we guaranteed to be?

Solution: $f(x) = \sin 2x$, $f'(x) = 2\cos 2x$, $f''(x) = -4\sin 2x$. Since $|\sin x|$ is bounded by 1, $|f''(x)| \le 4$. This gives us the value k = 4. Now using the formula for $|E_M|$, we have $|E_M| \le \frac{4\cdot 1^3}{24\cdot 20^2} = \frac{1}{2400} < .0005$. Our estimate would be within .0005.

Example 3: How large should n be to guarantee that using T_n to estimate $\int_0^1 e^{-3x} dx$ gives an error no larger than 0.001?

Solution: $f(x) = e^{-3x}$, $f'(x) = -3e^{-3x}$, $f''(x) = 9e^{-3x}$. f''(x) is decreasing, so it is largest at the left endpoint of the interval. f''(0) = 9, so on the interval [0, 1] we have |f''(x)| < 9. This is our value for k. So we need $|E_T| \le \frac{9 \cdot 1^3}{12n^2} < .001$. Solving gives $n^2 > \frac{9}{12 \cdot (.001)} = 750$. So we need $n > \sqrt{750} \approx 27.4$. We need n to be a whole number, and note that we must round up. So n = 28 suffices to get the desired accuracy.