Background info, approximating $\int_{a}^{b} f(x) d x$.
For each method, the subintervals are uniform. That is, $a=x_{0}, b=x_{n}$, and $\Delta x=\frac{b-a}{n}$.

Left-endpoint approximation

$L_{n}=\Delta x\left[f\left(x_{0}\right)+f\left(x_{1}\right)+\cdots+f\left(x_{n-1}\right)\right]$

Midpoint approximation

$$
\begin{gathered}
M_{n}=\Delta x\left[f\left(\overline{x_{1}}\right)+f\left(\overline{x_{2}}\right)+\cdots+f\left(\overline{x_{n}}\right)\right] \quad T_{n}=\frac{\Delta x}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)\right] \\
T_{n}=\frac{1}{2}\left(L_{n}+R_{n}\right)
\end{gathered}
$$

Right-endpoint approximation

$$
R_{n}=\Delta x\left[f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)\right]
$$

Trapezoidal approximation

Simpson's rule (note, n must be even). Simpson's rule uses sections of parabolas to estimate areas. For more about this image see http://www.maa.org/publications/periodicals/loci/ joma/estimating-the-area-of-virginia-using-simpsons-rule

$$
\begin{gathered}
S_{n}=\frac{\Delta x}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] \\
S_{2 n}=\frac{1}{3}\left(T_{n}+2 M_{n}\right)
\end{gathered}
$$

1. Values of $f(x)$ are given in the table below:

x	5	7	9	11	13	15	17
$f(x)$	-2	0	1	3	4	5	8

Estimate $\int_{5}^{17} f(x) d x$ using the following methods, if possible.

With $n=3, L_{n}=$

Solution: $\quad 4(-2+1+4)=12$

With $n=6, R_{n}=$

Solution: $2(0+1+3+4+5+8)=42$

With $n=6, T_{n}=$

Solution: $\quad \frac{2}{2}(-2+2 \cdot 0+2 \cdot 1+2 \cdot 3+2 \cdot 4+2 \cdot 5+8)=32$

With $n=6, M_{n}=$
Solution: Not possible with the given information. We don't know the values of the function at the 6 midpoints.

With $n=3, M_{n}=$

Solution: $\quad 4(0+3+5)=32$

With $n=3, S_{n}=$

Solution: Not possible because n is odd.

With $n=6, S_{n}=$

Solution: $\quad \frac{2}{3}(-2+4 \cdot 0+2 \cdot 1+4 \cdot 3+2 \cdot 4+4 \cdot 5+8)=32$
2. a. Examples of L_{n}. Please draw rectangles for $n=2$.

When $f(x)$ is \qquad , L_{n} is an overestimate.

When $f(x)$ is \qquad , L_{n} is an underestimate.
b. Examples of R_{n}. Please draw rectangles for $n=2$.

When $f(x)$ is \qquad , R_{n} is an overestimate.

When $f(x)$ is \qquad , R_{n} is an underestimate.
c. Examples of T_{n}. Please draw trapezoids for $n=2$.

When $f(x)$ is \qquad , T_{n} is an overestimate.

When $f(x)$ is \qquad , T_{n} is an underestimate.
2. d. Examples of M_{n}, with $n=2$.

By 'rotating' the top edge of the rectangles of a Midpoint approximation, we can draw them as trapezoids.

When $f(x)$ is \qquad , M_{n} is an overestimate.

When $f(x)$ is \qquad , M_{n} is an underestimate.
3. For $f(x)$ shown below, put $L_{n}, R_{n}, M_{n}, T_{n}$ and $\int_{a}^{b} f(x) d x$ in order from smallest to largest.

$$
L_{n}<M_{n}<\int_{a}^{b} f(x) d x<\ldots T_{n}<R_{n}
$$

Solution: Since the graph is increasing, we know that L_{n} is less than $\int_{a}^{b} f(x) d x$ and R_{n} is greater than $\int_{a}^{b} f(x) d x$. Since the graph is concave up, we know that M_{n} is less than $\int_{a}^{b} f(x) d x$ and T_{n} is greater than $\int_{a}^{b} f(x) d x$. To see which of L_{n} and M_{n} is larger, consider the rectangles we drew to represent the areas for each of them. Since the function is increasing the rectangles for L_{n} are shorter than the rectangles for M_{n}, so $L_{n}<M_{n}$. To see which of T_{n} and R_{n} is greater, notice that since the function is increasing, the trapezoids for T_{n} all lie within the rectangles for R_{n}, so $T_{n}<R_{n}$.

Background info, error bounds (see p. 405 in the textbook).

Suppose $\left|f^{\prime \prime}(x)\right| \leq k$ for $a \leq x \leq b$. If E_{T} and E_{M} are the errors in the trapezoidal and midpoint approximations, then

$$
\left|E_{T}\right| \leq \frac{k(b-a)^{3}}{12 n^{2}} \quad \text { and } \quad\left|E_{M}\right| \leq \frac{k(b-a)^{3}}{24 n^{2}}
$$

Example 1: If we use the trapezoidal approximation with $n=10$ to estimate $\int_{1}^{3} x^{3} d x$, how accurate are we guaranteed to be?
(If you want, make a guess before you do the calculation.)

$$
\begin{aligned}
& f(x)=x^{3} \\
& f^{\prime}(x)=-3 x^{2} \\
& f^{\prime \prime}(x)=\boxed{6 x}
\end{aligned}
$$

On $[1,3],\left|f^{\prime \prime}(x)\right| \leq _18 \quad$, because $f^{\prime \prime}(x)$ is increasing, max is at the right end point, $f(3)=18$.
So, $\left|E_{T}\right| \leq \quad \frac{18 \cdot 2^{3}}{12 \cdot 10^{2}}=.12 \quad$ (Is this more or less accurate than you guessed?)
Example 2: If we use the midpoint approximation with $n=20$ to estimate $\int_{0}^{1} \sin (2 x) d x$, how accurate are we guaranteed to be?

Solution: $f(x)=\sin 2 x, f^{\prime}(x)=2 \cos 2 x, f^{\prime \prime}(x)=-4 \sin 2 x$. Since $|\sin x|$ is bounded by 1 , $\left|f^{\prime \prime}(x)\right| \leq 4$. This gives us the value $k=4$.
Now using the formula for $\left|E_{M}\right|$, we have
$\left|E_{M}\right| \leq \frac{4 \cdot 1^{3}}{24 \cdot 20^{2}}=\frac{1}{2400}<.0005$. Our estimate would be within .0005 .

Example 3: How large should n be to guarantee that using T_{n} to estimate $\int_{0}^{1} e^{-3 x} d x$ gives an error no larger than 0.001 ?

Solution: $f(x)=e^{-3 x}, f^{\prime}(x)=-3 e^{-3 x}, f^{\prime \prime}(x)=9 e^{-3 x} . f^{\prime \prime}(x)$ is decreasing, so it is largest at the left endpoint of the interval. $f^{\prime \prime}(0)=9$, so on the interval $[0,1]$ we have $\left|f^{\prime \prime}(x)\right|<9$. This is our value for k. So we need $\left|E_{T}\right| \leq \frac{9 \cdot 1^{3}}{12 n^{2}}<.001$. Solving gives $n^{2}>\frac{9}{12 \cdot(.001)}=750$. So we need $n>\sqrt{750} \approx 27.4$. We need n to be a whole number, and note that we must round up. So $n=28$ suffices to get the desired accuracy.

