1. Water is pumped over the top of the full tank depicted below. How much work is done to drain the tank? Use $\boldsymbol{\rho} \mathrm{kg} / \mathrm{m}^{\mathbf{3}}$ for the density of water and $\boldsymbol{g} \mathrm{m} / \mathrm{sec}^{2}$ for the acceleration due to gravity.

Side View:
Front View:

(A) $\frac{340}{3} \rho \boldsymbol{g} \mathbf{J}$
(B) $\frac{380}{3} \rho g \mathrm{~J}$
(C) $\frac{650}{3} \rho g \mathrm{~J}$
(D) $\frac{560}{3} \rho g \mathrm{~J}$
(E) $\frac{520}{3} \rho g \mathrm{~J}$
2. Consider a lamina of uniform density bounded by the lines $\boldsymbol{x}+\boldsymbol{y}=\mathbf{1}, \boldsymbol{x}=\mathbf{0}$, and $\boldsymbol{y}=\mathbf{0}$. Compute the center of mass $(\overline{\boldsymbol{x}}, \overline{\boldsymbol{y}})$ of the lamina.
(A) $\left(\frac{1}{3}, \frac{1}{3}\right)$
(B) $\left(\frac{2}{5}, \frac{2}{5}\right)$
(C) $\left(\frac{3}{7}, \frac{3}{7}\right)$
(D) $\left(\frac{1}{4}, \frac{1}{4}\right)$
(E) $\left(\frac{4}{9}, \frac{4}{9}\right)$
3. Find the average value of the function $f(x)=\boldsymbol{x}^{3}+\boldsymbol{x}$ on the interval $[0,2]$.
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5
(F) 6
4. A force of $\mathbf{1 0 0} \mathrm{N}$ is required to hold a spring that has been stretched from its natural length of 20 cm to a length of 25 cm . How much work is done in stretching the spring from 25 cm to $\mathbf{3 0} \mathrm{cm}$?
(A) 15 J
(B) 10 J
(C) 5 J
(D) 5.5 J
(E) 7.5 J
(F) 9.5 J
5. Find the volume of the solid of revolution obtained by revolving the region bounded by the graphs of $\boldsymbol{y}=\sin \boldsymbol{x}, \mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{\pi}$, and the \boldsymbol{x}-axis, about the \boldsymbol{y}-axis.
(A) $\boldsymbol{\pi}$
(B) 2π
(C) $\boldsymbol{\pi}^{2}$
(D) $2 \pi^{2}$
(E) $\pi(\pi-1)$
(F) $\pi^{2}(\pi-1)$
6. Consider the curve with parametric equations $x=\sin t, y=\frac{2}{\sin t}$. Its tangent has slope $\mathbf{- 1}$ when $\boldsymbol{t}=$
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{2}$
(C) $\frac{\pi}{4}$
(D) $\frac{\pi}{3}$
(E) $\boldsymbol{\pi}$
(F) There is no such \boldsymbol{t}
7. The length of the curve $\boldsymbol{x}=2 \boldsymbol{t}+\sin \boldsymbol{t}, \boldsymbol{y}=1-\boldsymbol{\operatorname { c o s }} \boldsymbol{t},(0 \leq \boldsymbol{t} \leq \boldsymbol{\pi})$ is
(A) $\int_{0}^{\pi} \sqrt{4 t^{2}+2+4 t \sin t-2 \cos t} d t$
(B) $\int_{0}^{\pi} \sqrt{2-2 \cos t+\cos ^{2} t} d t$
(C) $\int_{0}^{\pi} \sqrt{1+\sin ^{2} t} d t$
(D) $\int_{0}^{\pi} \sqrt{3+2 \cos t+\sin ^{2} t} d t$
(E) $\int_{0}^{\pi} \sqrt{5+4 \cos t} d t$
8. The length of the curve given by $y=\frac{x^{3 / 2}-x^{1 / 2}}{\sqrt{3}}, 1 \leq x \leq 4$ is
(A) $2 \sqrt{3}$
(B) $\frac{8}{\sqrt{3}}$
(C) $\mathbf{6 \pi}$
(D) 8π
(E) $\frac{\pi}{\sqrt{3}}$
9. A conical tank is $\mathbf{5}$ meters high and the radius of its base is $\mathbf{2}$ meters long. The base of the tank rests on the ground. If the tank is filled with a liquid of density $\boldsymbol{\rho} \mathrm{kg} / \mathrm{m}^{3}$ and $\boldsymbol{g} \mathrm{m} / \mathrm{sec}^{2}$ is gravitational acceleration, the work necessary to empty it by pumping the liquid through its vertex at the top is
(A) $20 \pi \rho g \mathrm{~J}$
(B) $16 \pi \rho \boldsymbol{g} \mathrm{~J}$
(C) $50 \pi \rho \boldsymbol{g} \mathbf{J}$
(D) $\mathbf{2 5 \pi} \boldsymbol{\rho} \boldsymbol{g} \mathbf{J}$
(E) $12.5 \pi \rho \boldsymbol{g} \mathrm{~J}$
10. If a curve has parametric equation given by $\boldsymbol{x}=e^{2 t}, \boldsymbol{y}=e^{-t}$, then $\frac{d^{2} \boldsymbol{y}}{d x^{2}}$, for $\boldsymbol{t}=0$, is equal to
(A) 0
(B) 1
(C) $\frac{2}{3}$
(D) $\frac{1}{4}$
(E) $\frac{1}{3}$
11. If we use the method of cylindrical shells, then the volume of the solid obtained by rotating the region bounded by the curves

$$
y=e^{-x^{2}}, y=0, x=3, x=5
$$

about the line $\boldsymbol{x}=\mathbf{2}$ is expressed by integration:
(A) $2 \pi \int_{3}^{5}(x-2) e^{-x^{2}} d x$
(B) $2 \pi \int_{3}^{5} x e^{-x^{2}} d x$
(C) $2 \pi \int_{0}^{1} y \sqrt{-\ln y} d y$
(D) $2 \pi \int_{-5}^{5} x e^{-x^{2}} d x$
(E) $2 \pi \int_{3}^{5}(x+2) e^{-x^{2}} d x$
12. Which of the following is a solution to the differential equation $\boldsymbol{y}^{\prime}=\frac{\boldsymbol{y}}{\boldsymbol{x} \ln \boldsymbol{x}}$?
(A) $y=\ln x$
(B) $y=x \ln x$
(C) $y=\frac{\ln x}{x}$
(D) $y=x^{2} \ln x$
(E) $y=\frac{\ln x}{x^{2}}$
13. The length of the arc of the spiral given in polar coordinates by $r=e^{-\boldsymbol{2 \theta}}$, $0 \leq \theta \leq 1 / 2$ is
(A) $\frac{e+1}{\sqrt{6}}$
(B) $\frac{1-e}{2 \sqrt{3}}$
(C) $4\left(1-e^{-1}\right)$
(D) $\sqrt{2}\left(e^{2}-1\right)$
(E) $\frac{\sqrt{5}(e-1)}{2 e}$
14. If $\boldsymbol{y}(\boldsymbol{x})$ is the solution to the initial value problem $\boldsymbol{y}^{\prime}=\frac{4 \boldsymbol{x} \boldsymbol{y}}{2+\boldsymbol{x}^{2}}, \boldsymbol{y}(0)=4$, then $y(1)=$
(A) 2
(B) 4
(C) $\mathbf{9}$
(D) 1
(E) 0
15. Find the volume of the solid of revolution obtained by rotating the region bounded by the graphs of $\boldsymbol{y}=\ln \boldsymbol{x}, \boldsymbol{y}=\boldsymbol{0}, \boldsymbol{x}=1$, and $\boldsymbol{x}=\boldsymbol{e}$ about the \boldsymbol{y}-axis.
(A) $\frac{\pi}{2}\left(e^{2}-1\right)$
(B) $\frac{\pi}{2}\left(e^{2}+1\right)$
(C) $\frac{\pi}{2}\left(e^{2}-3\right)$
(D) $\pi\left(e^{2}+1\right)$
(E) $\pi\left(e^{2}-1\right)$
16. The area inside the curve $r=3 \sin \theta$ and outside the curve $r=1+\sin \theta$ is given by
(A) $\frac{1}{2} \int_{\pi / 3}^{2 \pi / 3}\left(8 \sin ^{2} \theta-1-2 \sin \theta\right) d \theta$
(B) $\frac{1}{2} \int_{\pi / 3}^{2 \pi / 3}\left(4 \sin ^{2} \theta-4 \sin \theta+1\right) d \theta$
(C) $\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}\left(4 \sin ^{2} \theta-4 \sin \theta+1\right) d \theta$
(D) $\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}\left(8 \sin ^{2} \theta-1-2 \sin \theta\right) d \theta$
(E) $\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}\left(4 \sin ^{2} \theta+4 \sin \theta+1\right) d \theta$
17. Find the slope of the tangent line to $\boldsymbol{x}=\boldsymbol{t} \boldsymbol{e}^{-t}, \boldsymbol{y}=\frac{\boldsymbol{t}^{\mathbf{3}}}{\mathbf{3}}$, at $\boldsymbol{t}=\mathbf{2}$.
(A) $\frac{1}{e^{2}}$
(B) $4 e^{2}$
(C) $-4 e^{2}$
(D) $-\frac{4}{e^{2}}$
(E) e^{2}
18. The length of the curve $\boldsymbol{r}=\sin ^{3} \boldsymbol{\theta}, \mathbf{0} \leq \boldsymbol{\theta} \leq \boldsymbol{\pi}$ is:
(A) $\int_{0}^{\pi} \sin \theta \sqrt{\sin \theta+3 \cos \theta} d \theta$
(B) $\int_{0}^{\pi} \sin \theta \sqrt{\sin \theta+9 \sin ^{2} \theta \cos ^{2} \theta} d \theta$
(C) $\int_{0}^{\pi} \sin \theta \sqrt{\sin ^{4} \theta+3 \cos \theta} d \theta$
(D) $\int_{0}^{\pi} \sin ^{2} \theta \sqrt{1+8 \cos ^{2} \theta} d \theta$
(E) $\int_{0}^{\pi} \sin ^{2} \theta \sqrt{\sin ^{2} \theta-9 \cos ^{2} \theta} d \theta$
19. A hard-boiled egg at $\mathbf{9 8}{ }^{\circ} \mathrm{C}$ is put in a sink of $18^{\circ} \mathrm{C}$ water. After 5 minutes, the egg's temperature is $\mathbf{3 8 ^ { \circ }} \mathbf{C}$. Assuming that the water has not wormed appreciably, how much longer will it take the egg to reach $20^{\circ} \mathrm{C}$?
(A) 5 min
(B) 8 min
(C) 11 min
(D) 13 min
(E) 16 min
(F) 23 min
20. Find the area of the region inside both $r=8 \cos \theta$ and $r=8 \sin \theta$.
(A) $8(\pi-2)$
(B) $8(\pi+2)$
(C) $\frac{8}{3}(4 \pi-3 \sqrt{3})$
(D) $4(2-\sqrt{2})$
(E) 16π
21. Find the length of the curve $\boldsymbol{r}=\boldsymbol{e}^{\boldsymbol{4 \theta}}$ with $\mathbf{0} \leq \boldsymbol{\theta} \leq \boldsymbol{\pi}$.
(A) $\frac{1}{16}\left(e^{8 \pi}-1\right)$
(B) $\frac{\sqrt{17}}{4}\left(e^{4 \pi}-1\right)$
(C) $\frac{32}{3}\left(\pi^{2}-1\right)$
(D) $\left(e^{8 \pi}-\sqrt{3}\right)$
(E) $\sqrt{\mathbf{1 7}}\left(e^{4 \pi}-1\right)$
22. Identify which of the following slope fields corresponds to the differential equation

$$
\frac{d y}{d x}=x+2 y
$$

23. A curve is given by parametric equations $x=t+\ln t, y=t-\ln t$.

When $t=1$ then $\frac{d^{2} y}{d x^{2}}=$
(A) $\frac{8}{3}$
(B) $\frac{7}{4}$
(C) $\frac{2}{5}$
(D) $\frac{1}{4}$
(E) 0
24. Select the correct graph of the circle $\boldsymbol{r}=\mathbf{3} \boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$ and the cardiod $\boldsymbol{r}=\mathbf{1}+\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$.
I)

II)

III)

IV)

25. The area between the spirals $\boldsymbol{r}=\boldsymbol{\theta}$ and $\boldsymbol{r}=\mathbf{2 \theta}, \mathbf{0} \leq \boldsymbol{\theta} \leq \boldsymbol{\pi} / \mathbf{2}$ is
(A) $\frac{\pi^{2}}{4}$
(B) $\pi^{2}-2$
(C) $\frac{\pi^{3}}{16}$
(D) $\pi^{3}+4 \pi$
(E) $\frac{\pi^{4}}{8}$
26. Which is true? The point whose Cartesian coordinates are $(1, \sqrt{3})$ has polar coordinates
(I) $(2, \pi / 3)$
(II) $(2,-5 \pi / 3)$
(III) $(2,4 \pi / 3)$
(A) Only I
(B) Only II
(C) Only III
(D) Only I and II
(E) All are true
27. Math the following slope fields with the correspoding differential equations given below.
I)

III)

(a) $\frac{d y}{d x}=\frac{y}{2}$
(b) $\frac{d y}{d x}=y-x$
(c) $\frac{d y}{d x}=\boldsymbol{x}+\boldsymbol{y}$
(d) $\frac{d y}{d x}=\frac{-y}{x}$
28. Select the correct graph of $\boldsymbol{r}=-\mathbf{3} \cos \mathbf{2 \theta}$.
(A)

(C)

(B)

(D)

29. The derivative of a function \boldsymbol{g} is $\boldsymbol{g}^{\prime}(\boldsymbol{x})=\sqrt{\sec ^{2} \boldsymbol{x} \tan ^{2} \boldsymbol{x}-1}$. What is the length of the curve $\boldsymbol{y}=\boldsymbol{g}(\boldsymbol{x})$ on the interval $0 \leq \boldsymbol{x} \leq \boldsymbol{\pi} / \boldsymbol{4}$.
(A) $\sqrt{2}-1$
(B) $\frac{\sqrt{2}}{2}-1$
(C) $\frac{\sqrt{2}}{2}$
(D) $\sqrt{2}$
(E) 1
30. Use Euler's Method with step size $\boldsymbol{h}=\mathbf{0 . 5}$ to estimate the value of $\boldsymbol{y}(\mathbf{1})$, where \boldsymbol{y} is the solution of the initial value problem:

$$
y^{\prime}=x+y \quad \text { and } \quad y(0)=1
$$

(A) 1
(B) $\frac{3}{2}$
(C) $\frac{1+\sqrt{5}}{2}$
(D) 2
(E) $\frac{5}{2}$
31. A state game commission releases 40 elk into a game refuge. Assume the elk population, \boldsymbol{P}, grows according to the following logistic model with a growth constant $k=\ln (\mathbf{1 1} / \mathbf{9})$ per year:

$$
\frac{d P}{d t}=k P\left(1-\frac{P}{4000}\right)
$$

At what time \boldsymbol{t} is the population of elk growing the fastest?
(A) 15 years
(B) 23 years
(C) $\mathbf{9}$ years
(D) 35 years
(E) 5 years

