1. Water is pumped over the top of the full tank depicted below. How much work is done to drain the tank? Use ρ kg/m³ for the density of water and g m/sec² for the acceleration due to gravity.

(A)
$$\frac{340}{3}\rho g J$$
 (B) $\frac{380}{3}\rho g J$ (C) $\frac{650}{3}\rho g J$ (D) $\frac{560}{3}\rho g J$ (E) $\frac{520}{3}\rho g J$

2. Consider a lamina of uniform density bounded by the lines x + y = 1, x = 0, and y = 0. Compute the center of mass (\bar{x}, \bar{y}) of the lamina.

(A)
$$\left(\frac{1}{3}, \frac{1}{3}\right)$$
 (B) $\left(\frac{2}{5}, \frac{2}{5}\right)$ (C) $\left(\frac{3}{7}, \frac{3}{7}\right)$ (D) $\left(\frac{1}{4}, \frac{1}{4}\right)$ (E) $\left(\frac{4}{9}, \frac{4}{9}\right)$

- 3. Find the average value of the function $f(x) = x^3 + x$ on the interval [0, 2].
 - (A) $\mathbf{1}$ (B) $\mathbf{2}$ (C) $\mathbf{3}$ (D) $\mathbf{4}$ (E) $\mathbf{5}$ (F) $\mathbf{6}$
- 4. A force of **100** N is required to hold a spring that has been stretched from its natural length of **20** cm to a length of **25** cm. How much work is done in stretching the spring from **25** cm to **30** cm?
 - (A) 15 J (B) 10 J (C) 5 J (D) 5.5 J (E) 7.5 J (F) 9.5 J
- 5. Find the volume of the solid of revolution obtained by revolving the region bounded by the graphs of $y = \sin x$, $0 \le x \le \pi$, and the *x*-axis, about the *y*-axis.
 - (A) π (B) 2π (C) π^2 (D) $2\pi^2$ (E) $\pi(\pi 1)$ (F) $\pi^2(\pi 1)$

6. Consider the curve with parametric equations $x = \sin t$, $y = \frac{2}{\sin t}$. Its tangent has slope -1 when t =

(A)
$$\frac{\pi}{6}$$
 (B) $\frac{\pi}{2}$ (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{3}$ (E) π (F) There is no such t

7. The length of the curve $x = 2t + \sin t$, $y = 1 - \cos t$, $(0 \le t \le \pi)$ is

(A)
$$\int_{0}^{\pi} \sqrt{4t^{2} + 2 + 4t \sin t - 2 \cos t} dt$$

(B) $\int_{0}^{\pi} \sqrt{2 - 2 \cos t + \cos^{2} t} dt$
(C) $\int_{0}^{\pi} \sqrt{1 + \sin^{2} t} dt$
(D) $\int_{0}^{\pi} \sqrt{3 + 2 \cos t + \sin^{2} t} dt$
(E) $\int_{0}^{\pi} \sqrt{5 + 4 \cos t} dt$

8. The length of the curve given by $y = \frac{x^{3/2} - x^{1/2}}{\sqrt{3}}, 1 \le x \le 4$ is

(A)
$$2\sqrt{3}$$
 (B) $\frac{8}{\sqrt{3}}$ (C) 6π (D) 8π (E) $\frac{\pi}{\sqrt{3}}$

9. A conical tank is 5 meters high and the radius of its base is 2 meters long. The base of the tank rests on the ground. If the tank is filled with a liquid of density $\rho \text{ kg/m}^3$ and $g \text{ m/sec}^2$ is gravitational acceleration, the work necessary to empty it by pumping the liquid through its vertex at the top is

(A) $20\pi\rho g J$ (B) $16\pi\rho g J$ (C) $50\pi\rho g J$ (D) $25\pi\rho g J$ (E) $12.5\pi\rho g J$

- 10. If a curve has parametric equation given by $x = e^{2t}$, $y = e^{-t}$, then $\frac{d^2y}{dx^2}$, for t = 0, is equal to
 - (A) **0** (B) **1** (C) $\frac{2}{3}$ (D) $\frac{1}{4}$ (E) $\frac{1}{3}$
- 11. If we use the method of cylindrical shells, then the volume of the solid obtained by rotating the region bounded by the curves

$$y=e^{-x^2},\,y=0,\,x=3,\,x=5$$

about the line x = 2 is expressed by integration:

(A)
$$2\pi \int_{3}^{5} (x-2)e^{-x^{2}} dx$$

(B) $2\pi \int_{3}^{5} xe^{-x^{2}} dx$
(C) $2\pi \int_{0}^{1} y\sqrt{-\ln y} dy$
(D) $2\pi \int_{-5}^{5} xe^{-x^{2}} dx$
(E) $2\pi \int_{3}^{5} (x+2)e^{-x^{2}} dx$

12. Which of the following is a solution to the differential equation $y' = \frac{y}{x \ln x}$?

(A)
$$\boldsymbol{y} = \ln \boldsymbol{x}$$
 (B) $\boldsymbol{y} = \boldsymbol{x} \ln \boldsymbol{x}$ (C) $\boldsymbol{y} = \frac{\ln \boldsymbol{x}}{\boldsymbol{x}}$ (D) $\boldsymbol{y} = \boldsymbol{x}^2 \ln \boldsymbol{x}$ (E) $\boldsymbol{y} = \frac{\ln \boldsymbol{x}}{\boldsymbol{x}^2}$

13. The length of the arc of the spiral given in polar coordinates by $r = e^{-2\theta}$, $0 \le \theta \le 1/2$ is

(A)
$$\frac{e+1}{\sqrt{6}}$$
 (B) $\frac{1-e}{2\sqrt{3}}$ (C) $4(1-e^{-1})$ (D) $\sqrt{2}(e^2-1)$ (E) $\frac{\sqrt{5}(e-1)}{2e}$

- 14. If y(x) is the solution to the initial value problem $y' = \frac{4xy}{2+x^2}$, y(0) = 4, then y(1) =
 - (A) **2** (B) **4** (C) **9** (D) **1** (E) **0**
- 15. Find the volume of the solid of revolution obtained by rotating the region bounded by the graphs of $y = \ln x, y = 0, x = 1$, and x = e about the y-axis.

(A)
$$\frac{\pi}{2}(e^2 - 1)$$
 (B) $\frac{\pi}{2}(e^2 + 1)$ (C) $\frac{\pi}{2}(e^2 - 3)$ (D) $\pi(e^2 + 1)$ (E) $\pi(e^2 - 1)$

16. The area inside the curve $r = 3 \sin \theta$ and outside the curve $r = 1 + \sin \theta$ is given by

(A)
$$\frac{1}{2} \int_{\pi/3}^{2\pi/3} (8\sin^2\theta - 1 - 2\sin\theta) d\theta$$

(B) $\frac{1}{2} \int_{\pi/3}^{2\pi/3} (4\sin^2\theta - 4\sin\theta + 1) d\theta$
(C) $\frac{1}{2} \int_{\pi/6}^{5\pi/6} (4\sin^2\theta - 4\sin\theta + 1) d\theta$
(D) $\frac{1}{2} \int_{\pi/6}^{5\pi/6} (8\sin^2\theta - 1 - 2\sin\theta) d\theta$
(E) $\frac{1}{2} \int_{\pi/6}^{5\pi/6} (4\sin^2\theta + 4\sin\theta + 1) d\theta$

17. Find the slope of the tangent line to $x = te^{-t}$, $y = \frac{t^3}{3}$, at t = 2.

(A)
$$\frac{1}{e^2}$$
 (B) $4e^2$ (C) $-4e^2$ (D) $-\frac{4}{e^2}$ (E) e^2

18. The length of the curve $r = \sin^3 \theta$, $0 \le \theta \le \pi$ is:

(A)
$$\int_{0}^{\pi} \sin \theta \sqrt{\sin \theta + 3 \cos \theta} \, d\theta$$

(B)
$$\int_{0}^{\pi} \sin \theta \sqrt{\sin \theta + 9 \sin^{2} \theta \cos^{2} \theta} \, d\theta$$

(C)
$$\int_{0}^{\pi} \sin \theta \sqrt{\sin^{4} \theta + 3 \cos \theta} \, d\theta$$

(D)
$$\int_{0}^{\pi} \sin^{2} \theta \sqrt{1 + 8 \cos^{2} \theta} \, d\theta$$

(E)
$$\int_{0}^{\pi} \sin^{2} \theta \sqrt{\sin^{2} \theta - 9 \cos^{2} \theta} \, d\theta$$

- 19. A hard-boiled egg at 98°C is put in a sink of 18°C water. After 5 minutes, the egg's temperature is 38°C. Assuming that the water has not wormed appreciably, how much longer will it take the egg to reach 20°C?
 - (A) **5** min (B) **8** min (C) **11** min (D) **13** min (E) **16** min (F) **23** min
- 20. Find the area of the region inside both $r = 8 \cos \theta$ and $r = 8 \sin \theta$.

(A)
$$8(\pi - 2)$$
 (B) $8(\pi + 2)$ (C) $\frac{8}{3}(4\pi - 3\sqrt{3})$ (D) $4(2 - \sqrt{2})$ (E) 16π

21. Find the length of the curve $r = e^{4\theta}$ with $0 \le \theta \le \pi$.

(A)
$$\frac{1}{16}(e^{8\pi}-1)$$

(B) $\frac{\sqrt{17}}{4}(e^{4\pi}-1)$
(C) $\frac{32}{3}(\pi^2-1)$
(D) $(e^{8\pi}-\sqrt{3})$
(E) $\sqrt{17}(e^{4\pi}-1)$

22. Identify which of the following slope fields corresponds to the differential equation

$$rac{dy}{dx} = x + 2y$$

Ι	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- / / / / / / / II	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
III	$\begin{array}{c} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 &$	I I	$\begin{array}{c} \begin{array}{c} & & & & & & & & & & & & & & & & & & &$

23. A curve is given by parametric equations $x = t + \ln t$, $y = t - \ln t$. When t = 1 then $\frac{d^2y}{dx^2} = \frac{1}{2}$

(A)
$$\frac{8}{3}$$
 (B) $\frac{7}{4}$ (C) $\frac{2}{5}$ (D) $\frac{1}{4}$ (E) 0

24. Select the correct graph of the circle $r = 3 \cos \theta$ and the cardiod $r = 1 + \cos \theta$.

25. The area between the spirals $r = \theta$ and $r = 2\theta$, $0 \le \theta \le \pi/2$ is

(A)
$$\frac{\pi^2}{4}$$
 (B) $\pi^2 - 2$ (C) $\frac{\pi^3}{16}$ (D) $\pi^3 + 4\pi$ (E) $\frac{\pi^4}{8}$

26. Which is true? The point whose Cartesian coordinates are $(1, \sqrt{3})$ has polar coordinates

(I) $(2, \pi/3)$ (II) $(2, -5\pi/3)$ (III) $(2, 4\pi/3)$

(A) Only I (B) Only II (C) Only III (D) Only I and II (E) All are true

27. Math the following slope fields with the correspoding differential equations given below.

(c)
$$\frac{dy}{dx} = x + y$$

(d)
$$\frac{dy}{dx} = \frac{-y}{x}$$

28. Select the correct graph of $r = -3\cos 2\theta$.

29. The derivative of a function g is $g'(x) = \sqrt{\sec^2 x \tan^2 x - 1}$. What is the length of the curve y = g(x) on the interval $0 \le x \le \pi/4$.

(A)
$$\sqrt{2} - 1$$
 (B) $\frac{\sqrt{2}}{2} - 1$ (C) $\frac{\sqrt{2}}{2}$ (D) $\sqrt{2}$ (E) 1

30. Use Euler's Method with step size h = 0.5 to estimate the value of y(1), where y is the solution of the initial value problem:

$$y'=x+y \quad ext{ and } \quad y(0)=1$$

(A) 1 (B)
$$\frac{3}{2}$$
 (C) $\frac{1+\sqrt{5}}{2}$ (D) 2 (E) $\frac{5}{2}$

31. A state game commission releases 40 elk into a game refuge. Assume the elk population, P, grows according to the following logistic model with a growth constant $k = \ln(11/9)$ per year:

$$\frac{dP}{dt} = kP\left(1 - \frac{P}{4000}\right)$$

At what time t is the population of elk growing the fastest?

(A) **15** years (B) **23** years (C) **9** years (D) **35** years (E) **5** years