MATH 2300 - review problems for Exam 3, part 1

1. Find the radius of convergence and interval of convergence for each of these power series:
(a) $\sum_{n=2}^{\infty} \frac{(x+5)^{n}}{2^{n} \ln n}$

Solution: Strategy: use the ratio test to determine that the radius of convergence is 2 , so the endpoints are $x=-7$ and $x=-3$. At $x=-7$, we have the series $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n}$, use alternating series test (don't forget to show hypotheses are met)to show that this series converges. At $x=-3$ we have $\sum_{n=2}^{\infty} \frac{1}{\ln n}$, use term-size comparison test, comparing to $\sum_{n=2}^{\infty} \frac{1}{n}$ to show the series diverges. Interval of convergence is $[-7,-3)$.
(b) $\sum_{n=0}^{\infty} \frac{n(x-1)^{n}}{4^{n}}$

Solution: Strategy: use the ratio test to determine that the radius of convergence is 4 , so the endpoints are $x=-3$ and $x=5$. At $x=-3$ we have the series $\sum_{n=0}^{\infty}(-1)^{n} n$, which we can show diverges by the divergence test. At $x=5$ we have the series $\sum_{n=0}^{\infty} n$, which we can also show diverges by the divergence test. The interval of convergence is $(-3,5)$.
(c) $\sum_{n=0}^{\infty} n!(3 x+1)^{n}$

Solution: Strategy: Use the ratio test to determine the radius of convergence.

$$
\lim _{n \rightarrow \infty} \frac{(n+1)!(3 x+1)^{n+1}}{n!(3 x+1)^{n}}=\lim _{n \rightarrow \infty}(n+1)(3 x+1)=\infty
$$

(provided $3 x+1 \neq 0$). So the radius of convergence is 0 . The only "endpoint" is when $3 x+1=0$, or $x=-\frac{1}{3}$. At this point, the sum becomes $\sum_{n=0}^{\infty} 0$, which converges. So the interval of convergence is actually just a point, $x=-\frac{1}{3}$.
(d) $\sum_{n=0}^{\infty} \frac{(-2)^{n+1} x^{n}}{n^{3}+1}$

Solution: Strategy: use the ratio test to show the radius of convergence is $\frac{1}{2}$, so the endpoints are $x=-\frac{1}{2}$ and $x=\frac{1}{2}$. At $x=-\frac{1}{2}$ we have the series $-2 \sum_{n=0}^{\infty} \frac{1}{n^{3}+1}$. You can show this converges using term-size comparison, comparing to $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$. At $x=\frac{1}{2}$ we have the series $-2 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{3}+1}$, which we can show converges absolutely by the term-size comparison test. The interval of convergence is $[-1 / 2,1 / 2]$.
(e) $\sum_{n=1}^{\infty} \frac{\ln n x^{n}}{n!}$

Solution: Again, use the ratio test.

$$
\lim _{n \rightarrow \infty} \frac{\ln (n+1) \cdot x^{n+1} \cdot n!}{\ln n \cdot x^{n} \cdot(n+1)!}=|x| \cdot \lim _{n \rightarrow \infty} \frac{1}{n+1} \cdot \lim _{n \rightarrow \infty} \frac{\ln (n+1)}{\ln n} .
$$

Use L'Hopital's rule on the last limit, we get a limit of $|x| \cdot 0 \cdot 1=0$, regardless of the value of x. So the radius of convergence is infinite, and the interval of convergence is $(-\infty, \infty)$ (meaning that the series converges for all x).
2. Let

$$
f(x)=\sum_{n=1}^{\infty} \frac{(x+4)^{n}}{n^{2}}
$$

Find the intervals of convergence of f and f^{\prime}. For $f:[-5,-3]$. For $f^{\prime}:[-5,-3)$.
3. If $\sum b_{n}(x-2)^{n}$ converges at $x=0$ but diverges at $x=7$, what is the largest possible interval of convergence of this series? What's the smallest possible? Largest: $[-3,7)$. Smallest: $[0,4)$.
4. The power series $\sum c_{n}(x-5)^{n}$ converges at $x=3$ and diverges at $x=11$. What are the possibilities for the radius of convergence? What can you say about the convergence of $\sum c_{n}$? Can you determine if the series converges at $x=6$? At $x=7$? At $x=8$? at $x=2$? At $x=-1$? At $x=-2$? At $x=12$? At $x=-3$? The radius of convergence must be between 2 and 6 (inclusive). When we substitute $x=6$, we get $\sum c_{n}$, which must converge since $x=6$ is inside the radius of convergence. The series converges at $x=6$. The series diverges at $x=-2$. We don't have enough information to determine convergence at $x=2$ or $x=8$. We also can't determine convergence at $x=-1$ or $x=7$, which possibly lie right at the edge of the interval of convergence.
5. The series $\sum c_{n}(x+2)^{n}$ converges at $x=-4$ and diverges at $x=0$. What can you say about the radius of convergence of the power series? What can you say about the convergence of $\sum c_{n}$? What can you say about the convergence of the series $\sum c_{n} 2^{n}$? What can you say about the convergence/divergence of the series at $x=-1$? At $x=-3$? At $x=1$? At $x=-10$? This time the radius of convergence must be exactly 2 , so the interval of convergence is $[-4,0)$ When we substitute $x=-1$ we get $\sum c_{n}$, which must converge since $x=-1$ is within the interval of convergence. When we substitute $x=0$ we get $\sum c_{n} 2^{n}$, which we have been told diverges. The series converges at $x=-1$ and at $x=-3$ and diverges at $x=1$ and $x=10$.
6. Say that $f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$. Find $f^{\prime}(x)$ by differentiating termwise. $f^{\prime}(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{(2 n+1) x^{2 n}}{(2 n+1)!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$. Note that $f(x)=\sin x$, and $f^{\prime}(x)=\cos x$.
7. Use any method to find a power series representation of each of these functions, centered about $a=0$. Give the interval of convergence (Note: you should be able to give this interval based on your derivation of the series, not by using the ratio test.)
(a) $\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}$
(b) $\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$
(c) $\arctan x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)}$
(d) $x e^{x}-x=\sum_{n=1}^{\infty} \frac{x^{n+1}}{n!}$
(e) $\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}$
(f) $x \ln \left(1+3 x^{2}\right)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{3^{n} x^{2 n+1}}{n}$
(g) $\frac{\sin \left(-2 x^{2}\right)}{x}=\sum_{n=0}^{\infty}(-1)^{n+1} \frac{2^{2 n+1} x^{4 n+1}}{(2 n+1)!}$
(h) $\frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n-1}$
(i) $\int \frac{1}{1+x^{5}} d x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{5 n+1}}{5 n+1}+C$
8. Determine the function or number represented by the following series:
(a) $\sum_{n=1}^{\infty} n x^{n-1}=\frac{1}{(1-x)^{2}}$
(b) $\sum_{n=1}^{\infty} n x^{n}=\frac{x}{(1-x)^{2}}$
(c) $\sum_{n=0}^{\infty} \frac{x^{2 n}}{5^{2 n} n!}=e^{x^{2} / 25}$
(d) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n} x^{2 n+1}}{(2 n+1)!}=\frac{1}{2} \sin 2 x$
(e) $\sum_{n=1}^{\infty} \frac{x^{2 n}}{n}=-\ln \left(1-x^{2}\right)$
(f) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{2 n}}{(2 n)!}=\cos (3)$
9. A car is moving with speed $20 \mathrm{~m} / \mathrm{s}$ and acceleration $2 \mathrm{~m} / \mathrm{s}^{2}$ at a given instant. Using a second degree Taylor polynomial, estimate how far the car moves in the next second.
Solution: You should use the Taylor polynomial $P_{2}(x)=x^{2}+20 x+C$ where C is some constant. Then the best estimation for how far the car moves in the next second is

$$
P_{2}(1)-P_{2}(0)=21+C-C=21 \text { meters }
$$

10. Estimate $\int_{0}^{1} \frac{\sin t}{t} d t$ using a 3rd degree Taylor Polynomial. What degree Taylor Polynomial should be used to get an estimate within 0.005 of the true value of the integral? (Hint: use the alternating series estimate). Answer: $\frac{17}{18}$. The value is estimated by the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)(2 n+1)!}$, the nth term is less than 0.005 when $n=2$, so we must add only two terms, $1-\frac{1}{3 \cdot 3!}$
11. Calculate the Taylor series of $\ln (1+x)$ by two methods. First calculate it "from scratch" by finding terms from the general form of Taylor series. Then calculate it again by starting with the Taylor series for $f(x)=\frac{1}{1-x}$ and manipulating it. Determine the interval of convergence each time.
12. Express the integral as an infinite series.

$$
\int \frac{e^{x}-1}{x} d x
$$

$\int \frac{e^{x}-1}{x} d x=\sum_{n=1}^{\infty} \frac{x^{n}}{n \cdot n!}+C$
13. Let $f(x)=\frac{1}{1-x}$.
(a) Find an upper bound M for $\left|f^{(n+1)}(x)\right|$ on the interval $(-1 / 2,1 / 2) \cdot 2^{n+2} \cdot(n+1)$!
(b) Use this result to show that the Taylor series for $\frac{1}{1-x}$ converges to $\frac{1}{1-x}$ on the interval $(-1 / 2,1 / 2)$.By part (a) and by Taylor's inequality, we have $\left|R_{n}(x)\right| \leq \frac{2^{n+2} \cdot(n+1)!}{(n+1)!}|x|^{n+1}=$ $2 \cdot(2|x|)^{n+1}$ on $(-1 / 2,1,2)$. But the fact that $|x|<1 / 2$ on this interval tells us that $\lim _{n \rightarrow \infty}\left|R_{n}(x)\right| \leq$ $2 \cdot \lim _{n \rightarrow \infty}(2|x|)^{n+1}=0$ on this interval. But remember that $R_{n}(x)=f(x)-P_{n}(x)$, where $P_{n}(x)$ is the nth degree Taylor polynomial for $f(x)$. So $P_{n}(x) \rightarrow f(x)$ as $x \rightarrow \infty$, and we're done.
14. Consider the function $y=f(x)$ sketched below.

Suppose $f(x)$ has Taylor series

$$
f(x)=a_{0}+a_{1}(x-4)+a_{2}(x-4)^{2}+a_{3}(x-4)^{3}+\ldots
$$

about $x=4$.
(a) Is a_{0} positive or negative? Please explain. $a_{0}>0$, because the function is positive at $x=4$.
(b) Is a_{1} positive or negative? Please explain. $a_{1}>0$, because the function is increasing at $x=4$.
(c) Is a_{2} positive or negative? Please explain. $a_{2}<0$, because the function is concave down at $x=4$.
15. How many terms of the Taylor series for $\ln (1+x)$ centered at $x=0$ do you need to estimate the value of $\ln (1.4)$ to three decimal places (that is, to within .0005$)$? We will use the error bound. The error bound corresponding to $P_{n}(0.4)$ is given by $\frac{M(0.4)^{n+1}}{(n+1)!}$, where M is the maximum of $\left|f^{n+1}(u)\right|$ on the interval $[0,0.4]$. For $n \geq 1$, the derivatives of $f(x)=\ln (1+x)$ are given by the following formula: $f^{n}(x)=\frac{(-1)^{n-1}(n-1)!}{(1+x)^{n}}$ Clearly, $\left|f^{n+1}(u)\right|=\frac{n!}{(1+u)^{n+1}}$ is decreasing on the interval $[0,0.4]$, so $M=\frac{n!}{(1+0)^{n+1}}=n!$ The error bound is then $\frac{n!(0.4)^{n+1}}{(n+1)!}=\frac{(0.4)^{n+1}}{n+1}$. The first n for which the error bound is smaller than 0.0005 is $n=6$. (Note: sticking strictly to the method of the textbook, you would find the maximum of $\left|f^{n+1}(u)\right|$ on the interval $[-0.4,0.4]$. In this method, substitute $x=-0.4$ to find the bound M.)
16. (a) Find the 4th degree Taylor Polynomial for $\cos x$ centered at $a=\pi / 2$. $P_{4}(x)=-\left(x-\frac{\pi}{2}\right)+\frac{1}{6}\left(x-\frac{\pi}{2}\right)^{3}$
(b) Use it to estimate $\cos \left(89^{\circ}\right) .89^{\circ}=\frac{89 \pi}{180}$, so $\cos \left(89^{\circ}\right) \approx-\left(-\frac{\pi}{180}\right)+\frac{1}{6}\left(-\frac{\pi}{180}\right)^{3} \approx 0.0174524064$
(c) Use Taylor's inequality to determine what degree Taylor Polynomial should be used to guarantee the estimate to within .005 . The $(n+1)$ st derivative of $\cos (x)$ is $\pm \sin x$ or $\pm \cos x$, so an upper bound for $f^{(n+1)}(x)$ is $M=1$. $\left|E_{n}\left(\frac{89 \pi}{180}\right)\right| \leq \frac{1}{(n+1)!}\left|\frac{89 \pi}{180}-\frac{90 \pi}{180}\right|^{n+1}$. When $n=1$ this quantity is $<.005$, so the first term gives an approximation to within 0.005 .
17. (a) Find the 3rd degree Taylor Polynomial $P_{3}(x)$ for $f(x)=\sqrt{x}$ centered at $a=1$ by differentiating and using the general form of Taylor Polynomials.
Solution:

$$
P_{3}(x)=1+\frac{x-1}{2}-\frac{(x-1)^{2}}{8}+\frac{(x-1)^{3}}{16}
$$

(b) Use the Taylor Polynomial in part (a) to estimate $\sqrt{1.1}$. Solution:

$$
\sqrt{1.1} \approx P_{3}(1.1)=1.0488125
$$

(c) Use Taylor's inequality to determine how accurate is your estimate is guaranteed to be. Solution: $\left|f^{(4)}(x)\right|=\frac{15}{16} x^{-7 / 2}$. This is a decreasing function on the interval $[1,1.1]$, so its largest value occurs at $x=1$. Thus I can use $f(1)=\frac{15}{16}$ for M. By Taylor's inequality, the absolute value of my error is bounded by $\frac{M}{4!}(x-a)^{4}=\frac{15}{16 \cdot 24}(.1)^{4} \approx 3.9 \times 10^{-6}$. (Note: sticking strictly to the method of the textbook, we find the maximum of $\left|f^{(4)}(x)\right|=\frac{15}{16} x^{-7 / 2}$ on the interval $[0.9,1.1]$. In this method substitute $x=0.9$ to find the bound M.)
18. Use Taylor's inequality to find a reasonable bound for the error in approximating the quantity $e^{0.60}$ with a third degree Taylor polynomial for e^{x} centered at $a=0$. We are estimating e^{x} at $x=0.6$. For $f(x)=e^{x}, n=3, a=0, x=0.6$, Taylor's inequality gives the bound $\frac{M x^{4}}{4!}$, where M is the maximum of $\left|f^{4}(x)\right|=\left|e^{x}\right|$ on the interval $(0,0.6)$. Since $\left|f^{4}(x)\right|=e^{x}$ is an increasing function, its maximum on this interval occurs at the right-hand endpoint, so $M=e^{0.6}$. The bound is: $\frac{e^{0.6}(0.6)^{4}}{4!}<\frac{3^{0.6}(0.6)^{4}}{4!}$. (Note: sticking strictly to the method of the textbook, we would find the maximum of $\left|f^{(4)} x\right|$ on the interval ($-0.6,0.6$), and the same value of $M=e^{0.6}$ would work.)
19. Consider the error in using the approximation $\sin \theta \approx \theta-\theta^{3} / 3$! on the interval $[-1,1]$. Where is the approximation an overestimate? Where is it an underestimate?

For $0 \leq \theta \leq 1$, the estimate is an underestimate (the alternating Taylor series for $\sin \theta$ is truncated after a negative term). For $-1 \leq \theta \leq 0$, the estimate is an overestimate (the alternating Taylor series is truncated after a positive term).
20. Write down from memory the Taylor Series centered around $a=0$ for the functions $e^{x}, \sin x, \cos x$ and $\frac{1}{1-x}$.
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, converges to e^{x} on $(-\infty, \infty)$
$\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$, converges to $\sin x$ on $(-\infty, \infty)$
$\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$, converges to $\cos x$ on $(-\infty, \infty)$
$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$, converges to $\frac{1}{1-x}$ on $(-1,1)$
21. (a) Find the 4th degree Taylor Polynomial for $f(x)=\sqrt{x}$ centered at $a=1$ by differentiating and using the general form of Taylor Polynomials.
$P_{4}(x)=1+\frac{x-1}{2}-\frac{1}{8}(x-1)^{2}+\frac{1}{16}(x-1)^{3}-\frac{5}{128}(x-1)^{4}$
(b) Use the previous answer to find the 4th degree T.P. for $f(x)=\sqrt{1-x}$ centered at $x=0$. substitute $1-x$ for x, need 4th degree: $P_{4}(x)=1-\frac{x}{2}-\frac{1}{8} x^{2}-\frac{1}{16} x^{3}-\frac{5}{128} x^{4}$
(c) Use the previous answer to find the 3rd degree T.P. for $f(x)=\frac{1}{\sqrt{1-x}}$.

Differentiate, multiply by $-2: P_{3}(x)=1+\frac{x}{2}+\frac{3}{8} x^{2}+\frac{5}{16} x^{3}$
(d) Use the previous answer to find the 3rd degree T.P. for $f(x)=\frac{1}{\sqrt{1-x^{2}}}$.

Substitute x^{2} for $x: P_{3}(x)=1+\frac{x^{2}}{2}$, note that the x^{3} term is 0 .
(e) Use the previous answer to find the 3rd degree T.P. for $f(x)=\arcsin x$.

Integrate, substitute to verify that the constant term is $0: P_{3}(x)=x+\frac{x^{3}}{6}$

