MATH 2300 - review problems for Exam 3, part 1

1. Find the radius of convergence and interval of convergence for each of these power series:
(a) $\sum_{n=2}^{\infty} \frac{(x+5)^{n}}{2^{n} \ln n}$
(b) $\sum_{n=0}^{\infty} \frac{n(x-1)^{n}}{4^{n}}$
(c) $\sum_{n=0}^{\infty} n!(3 x+1)^{n}$
(d) $\sum_{n=0}^{\infty} \frac{(-2)^{n+1} x^{n}}{n^{3}+1}$
(e) $\sum_{n=1}^{\infty} \frac{\ln n x^{n}}{n!}$
2. Let

$$
f(x)=\sum_{n=1}^{\infty} \frac{(x+4)^{n}}{n^{2}}
$$

Find the intervals of convergence of f and f^{\prime}.
3. If $\sum b_{n}(x-2)^{n}$ converges at $x=0$ but diverges at $x=7$, what is the largest possible interval of convergence of this series? What's the smallest possible?
4. The power series $\sum c_{n}(x-5)^{n}$ converges at $x=3$ and diverges at $x=11$. What are the possibilities for the radius of convergence? What can you say about the convergence of $\sum c_{n}$? Can you determine if the series converges at $x=6$? At $x=7$? At $x=8$? at $x=2$? At $x=-1$? At $x=-2$? At $x=12$? At $x=-3$?
5. The series $\sum c_{n}(x+2)^{n}$ converges at $x=-4$ and diverges at $x=0$. What can you say about the radius of convergence of the power series? What can you say about the convergence of $\sum c_{n}$? What can you say about the convergence of the series $\sum c_{n} 2^{n}$? What can you say about the convergence/divergence of the series at $x=-1$? At $x=-3$? At $x=1$? At $x=-10$?
6. Say that $f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$. Find $f^{\prime}(x)$ by differentiating termwise.
7. Use any method to find a power series representation of each of these functions, centered about $a=0$. Give the interval of convergence (Note: you should be able to give this interval based on your derivation of the series, not by using the ratio test.)
(a) $\frac{1}{1+x}$
(b) $\frac{1}{1+x^{2}}$
(c) $\arctan x$
(d) $x e^{x}-x$
(e) $\ln (1+x)$
(f) $x \ln \left(1+3 x^{2}\right)$
(g) $\frac{\sin \left(-2 x^{2}\right)}{x}$
(h) $\frac{1}{(1-x)^{2}}$
(i) $\int \frac{1}{1+x^{5}} d x$
8. Determine the function or number represented by the following series:
(a) $\sum_{n=1}^{\infty} n x^{n-1}$
(b) $\sum_{n=1}^{\infty} n x^{n}$
(c) $\sum_{n=0}^{\infty} \frac{x^{2 n}}{5^{2 n} n!}$
(d) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n} x^{2 n+1}}{(2 n+1)!}$
(e) $\sum_{n=1}^{\infty} \frac{x^{2 n}}{n}$
(f) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{2 n}}{(2 n)!}$
9. A car is moving with speed $20 \mathrm{~m} / \mathrm{s}$ and acceleration $2 \mathrm{~m} / \mathrm{s}^{2}$ at a given instant. Using a second degree Taylor polynomial, estimate how far the car moves in the next second.
10. Estimate $\int_{0}^{1} \frac{\sin t}{t} d t$ using a 3rd degree Taylor Polynomial. What degree Taylor Polynomial should be used to get an estimate within 0.005 of the true value of the integral? (Hint: use the alternating series estimate).
11. Calculate the Taylor series of $\ln (1+x)$ by two methods. First calculate it "from scratch" by finding terms from the general form of Taylor series. Then calculate it again by starting with the Taylor series for $f(x)=\frac{1}{1-x}$ and manipulating it. Determine the interval of convergence each time.
12. Express the integral as an infinite series.

$$
\int \frac{e^{x}-1}{x} d x
$$

13. Let $f(x)=\frac{1}{1-x}$.
(a) Find an upper bound M for $\left|f^{(n+1)}(x)\right|$ on the interval $(-1 / 2,1 / 2)$.
(b) Use this result to show that the Taylor series for $\frac{1}{1-x}$ converges to $\frac{1}{1-x}$ on the interval ($-1 / 2,1 / 2$).
14. Consider the function $y=f(x)$ sketched below.

Suppose $f(x)$ has Taylor series

$$
f(x)=a_{0}+a_{1}(x-4)+a_{2}(x-4)^{2}+a_{3}(x-4)^{3}+\ldots
$$

about $x=4$.
(a) Is a_{0} positive or negative? Please explain.
(b) Is a_{1} positive or negative? Please explain.
(c) Is a_{2} positive or negative? Please explain.
15. How many terms of the Taylor series for $\ln (1+x)$ centered at $x=0$ do you need to estimate the value of $\ln (1.4)$ to three decimal places (that is, to within .0005$)$?
16. (a) Find the 4th degree Taylor Polynomial for $\cos x$ centered at $a=\pi / 2$.
(b) Use it to estimate $\cos \left(89^{\circ}\right)$.
(c) Use Taylor's inequality to determine what degree Taylor Polynomial should be used to guarantee the estimate to within .005 .
17. (a) Find the 3rd degree Taylor Polynomial $P_{3}(x)$ for $f(x)=\sqrt{x}$ centered at $a=1$ by differentiating and using the general form of Taylor Polynomials.
(b) Use the Taylor Polynomial in part (a) to estimate $\sqrt{1.1}$.
(c) Use Taylor's inequality to determine how accurate is your estimate is guaranteed to be.
18. Use Taylor's inequality to find a reasonable bound for the error in approximating the quantity $e^{0.60}$ with a third degree Taylor polynomial for e^{x} centered at $a=0$.
19. Consider the error in using the approximation $\sin \theta \approx \theta-\theta^{3} / 3$! on the interval $[-1,1]$. Where is the approximation an overestimate? Where is it an underestimate?
20. Write down from memory the Taylor Series centered around $a=0$ for the functions $e^{x}, \sin x, \cos x$ and $\frac{1}{1-x}$.
21. (a) Find the 4th degree Taylor Polynomial for $f(x)=\sqrt{x}$ centered at $a=1$ by differentiating and using the general form of Taylor Polynomials.
(b) Use the previous answer to find the 4th degree T.P. for $f(x)=\sqrt{1-x}$ centered at $x=0$.
(c) Use the previous answer to find the 3rd degree T.P. for $f(x)=\frac{1}{\sqrt{1-x}}$.
(d) Use the previous answer to find the 3rd degree T.P. for $f(x)=\frac{1}{\sqrt{1-x^{2}}}$.
(e) Use the previous answer to find the 3rd degree T.P. for $f(x)=\arcsin x$.

