MATH 2300 – review problems for Exam 3, part 1

1. Find the radius of convergence and interval of convergence for each of these power series:

(a)
$$\sum_{n=2}^{\infty} \frac{(x+5)^n}{2^n \ln n}$$

(b)
$$\sum_{n=0}^{\infty} \frac{n(x-1)^n}{4^n}$$

(c)
$$\sum_{n=0}^{\infty} n! (3x+1)^n$$

(d)
$$\sum_{n=0}^{\infty} \frac{(-2)^{n+1} x^n}{n^3 + 1}$$

(e)
$$\sum_{n=1}^{\infty} \frac{\ln n x^n}{n!}$$

2. Let

$$f(x) = \sum_{n=1}^{\infty} \frac{(x+4)^n}{n^2}$$

Find the intervals of convergence of f and f'.

- 3. If $\sum b_n(x-2)^n$ converges at x=0 but diverges at x=7, what is the largest possible interval of convergence of this series? What's the smallest possible?
- 4. The power series $\sum c_n(x-5)^n$ converges at x = 3 and diverges at x = 11. What are the possibilities for the radius of convergence? What can you say about the convergence of $\sum c_n$? Can you determine if the series converges at x = 6? At x = 7? At x = 8? at x = 2? At x = -1? At x = -2? At x = 12? At x = -3?
- 5. The series $\sum c_n (x+2)^n$ converges at x = -4 and diverges at x = 0. What can you say about the radius of convergence of the power series? What can you say about the convergence of $\sum c_n$? What can you say about the convergence of the series $\sum c_n 2^n$? What can you say about the convergence/divergence of the series at x = -1? At x = -3? At x = 1? At x = -10?
- 6. Say that $f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$. Find f'(x) by differentiating termwise.
- 7. Use any method to find a power series representation of each of these functions, centered about a = 0. Give the interval of convergence (Note: you should be able to give this interval based on your derivation of the series, not by using the ratio test.)

(a)
$$\frac{1}{1+x}$$

(b)
$$\frac{1}{1+x^2}$$

(c) $\arctan x$
(d) $xe^x - x$

(e) $\ln(1+x)$

(f)
$$x \ln (1 + 3x^2)$$

(g) $\frac{\sin (-2x^2)}{x}$
(h) $\frac{1}{(1-x)^2}$
(i) $\int \frac{1}{1+x^5} dx$

8. Determine the function or number represented by the following series:

(a)
$$\sum_{n=1}^{\infty} nx^{n-1}$$

(b) $\sum_{n=1}^{\infty} nx^{n}$
(c) $\sum_{n=0}^{\infty} \frac{x^{2n}}{5^{2n}n!}$
(d) $\sum_{n=0}^{\infty} \frac{(-1)^{n}2^{2n}x^{2n+1}}{(2n+1)!}$
(e) $\sum_{n=1}^{\infty} \frac{x^{2n}}{n}$
(f) $\sum_{n=0}^{\infty} \frac{(-1)^{n}3^{2n}}{(2n)!}$

- 9. A car is moving with speed 20 m/s and acceleration 2 m/s^2 at a given instant. Using a second degree Taylor polynomial, estimate how far the car moves in the next second.
- 10. Estimate $\int_0^1 \frac{\sin t}{t} dt$ using a 3rd degree Taylor Polynomial. What degree Taylor Polynomial should be used to get an estimate within 0.005 of the true value of the integral? (Hint: use the alternating series estimate).
- 11. Calculate the Taylor series of $\ln(1+x)$ by two methods. First calculate it "from scratch" by finding terms from the general form of Taylor series. Then calculate it again by starting with the Taylor series for $f(x) = \frac{1}{1-x}$ and manipulating it. Determine the interval of convergence each time.
- 12. Express the integral as an infinite series.

$$\int \frac{e^x - 1}{x} \, dx$$

13. Let $f(x) = \frac{1}{1-x}$.

- (a) Find an upper bound M for $|f^{(n+1)}(x)|$ on the interval (-1/2, 1/2).
- (b) Use this result to show that the Taylor series for $\frac{1}{1-x}$ converges to $\frac{1}{1-x}$ on the interval (-1/2, 1/2).

14. Consider the function y = f(x) sketched below.

Suppose f(x) has Taylor series

$$f(x) = a_0 + a_1(x-4) + a_2(x-4)^2 + a_3(x-4)^3 + \dots$$

about x = 4.

- (a) Is a_0 positive or negative? Please explain.
- (b) Is a_1 positive or negative? Please explain.
- (c) Is a_2 positive or negative? Please explain.
- 15. How many terms of the Taylor series for $\ln(1 + x)$ centered at x = 0 do you need to estimate the value of $\ln(1.4)$ to three decimal places (that is, to within .0005)?
- 16. (a) Find the 4th degree Taylor Polynomial for $\cos x$ centered at $a = \pi/2$.
 - (b) Use it to estimate $\cos(89^\circ)$.
 - (c) Use Taylor's inequality to determine what degree Taylor Polynomial should be used to guarantee the estimate to within .005.
- 17. (a) Find the 3rd degree Taylor Polynomial $P_3(x)$ for $f(x) = \sqrt{x}$ centered at a = 1 by differentiating and using the general form of Taylor Polynomials.
 - (b) Use the Taylor Polynomial in part (a) to estimate $\sqrt{1.1}$.
 - (c) Use Taylor's inequality to determine how accurate is your estimate is guaranteed to be.
- 18. Use Taylor's inequality to find a reasonable bound for the error in approximating the quantity $e^{0.60}$ with a third degree Taylor polynomial for e^x centered at a = 0.
- 19. Consider the error in using the approximation $\sin \theta \approx \theta \theta^3/3!$ on the interval [-1, 1]. Where is the approximation an overestimate? Where is it an underestimate?
- 20. Write down from memory the Taylor Series centered around a = 0 for the functions e^x , $\sin x$, $\cos x$ and $\frac{1}{1-x}$.
- 21. (a) Find the 4th degree Taylor Polynomial for $f(x) = \sqrt{x}$ centered at a = 1 by differentiating and using the general form of Taylor Polynomials.
 - (b) Use the previous answer to find the 4th degree T.P. for $f(x) = \sqrt{1-x}$ centered at x = 0.
 - (c) Use the previous answer to find the 3rd degree T.P. for $f(x) = \frac{1}{\sqrt{1-x}}$.
 - (d) Use the previous answer to find the 3rd degree T.P. for $f(x) = \frac{1}{\sqrt{1-x^2}}$.
 - (e) Use the previous answer to find the 3rd degree T.P. for $f(x) = \arcsin x$.