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Name

PRACTICE EXAM

SOLUTIONS

Please answer all of the questions, and show your work.
You must explain your answers to get credit.

You will be graded on the clarity of your exposition!

Date: October 27, 2018.
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1

8 points

1. Match the following functions with their corresponding Maclaurin series:

(a) ex2/2 = (VI)

(b) cos
(x

2

)
= (II)

(c)
1

(1− x)2 = (III)

(d) x arctan(x) = (IV)

(I)
∞

∑
n=0

x2n

(II)
∞

∑
n=0

(−1)nx2n

22n(2n)!

(III)
∞

∑
n=1

nxn−1

(IV)
∞

∑
n=0

(−1)nx2n+2

2n + 1

(V)
∞

∑
n=0

(−1)nx2n+2

(2n + 1)!

(VI)
∞

∑
n=0

x2n

2nn!

SOLUTION

Here are more details on the solutions:

1.(a). We know that the Maclaurin series for ex is ∑∞
n=0

xn

n! . Thus, substituting x2 7→ x2/2,
we obtain that the Macluarin series for ex2/2 is

∞

∑
n=0

x2n

2nn!
.
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1.(b). We know that the Maclaurin series for cos(x) is ∑∞
n=0

(−1)nx2n

(2n)! . Thus, substituting
x 7→ x/2, we obtain that the Macluarin series for cos(x/2) is

∞

∑
n=0

(−1)nx2n

22n(2n)!
.

1.(c). We have the geometric series

1
1− x

=
∞

∑
n=0

xn

Using term-by-term differentiation,

d
dx

(
1

1− x

)
=

d
dx

∞

∑
n=0

xn

1
(1− x)2 =

∞

∑
n=1

nxn−1

1.(d). The Maclaurin series for arctan x is

arctan x =
∞

∑
n=0

(−1)nx2n+1

2n + 1

Multiplying by x,

x arctan x = x
∞

∑
n=0

(−1)nx2n+1

2n + 1
=

∞

∑
n=0

(−1)nx2n+2

2n + 1
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2

12 points

2. Consider the power series
∞

∑
n=1

(x− 5)n

2nn2

2.(a). Find the radius of convergence of the power series. Show all work in justifying your

answer. R = 2

2.(b). Find the interval of convergence. Show all work in justifying your answer. [3, 7]

SOLUTION

Here are more details on the solutions:

2.(a). Using the Ratio Test and applying limit laws,

L = lim
n→∞

∣∣∣∣ (x− 5)n+1

2n+1(n + 1)2 ·
2nn2

(x− 5)n

∣∣∣∣ = lim
n→∞

|x− 5|
2
· n2

(n + 1)2

=
|x− 5|

2
· lim

n→∞

n2

(n + 1)2 =
|x− 5|

2
· 1 =

|x− 5|
2

Setting L < 1,

|x− 5|
2

< 1

|x− 5| < 2

Hence the radius of convergence is 2.

2.(b). The above inequality gives us an interval of radius 2 centered at a = 5. This inter-
val has x = 3 and x = 7 as its endpoints so we must check for convergence at these points.

x = 3
∞

∑
n=1

(3− 5)n

2nn2 =
∞

∑
n=1

(−2)n

2nn2 =
∞

∑
n=1

(−1)n

n2

The above series converges by the Alternating Series Test; even better, it converges abso-
lutely by the p-Test with p = 2.
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x = 7
∞

∑
n=1

(7− 5)n

2nn2 =
∞

∑
n=1

2n

2nn2 =
∞

∑
n=1

1
n2

The above series converges by the p-Test with p = 2.

Since the power series converges on both endpoints, the interval of convergence is [3, 7].
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3

12 points
3. Find the solution of the differential equation

y(x + 1) + y′ = 0

that satisfies the initial condition y(−2) = 1. Show all your work.

SOLUTION

The solution is

y = e−x2/2−x

To see this, observe that the differential equation is separable.

y(x + 1) + y′ = 0

y′ = −y(x + 1)
dy
dx

= −y(x + 1)

dy
y

= −(x + 1)dx∫ dy
y

=
∫
−(x + 1)dx

ln |y| = −x2/2− x + C

eln |y| = e−x2/2−x+C

|y| = e−x2/2−x+C

Let K = ±eC. Then y = Ke−x2/2−x and plugging in the initial condition,

1 = Ke−(−2)2/2−(−2) = Ke−2+2 = K

Hence the solution to the differential equation with the given initial condition is

y = e−x2/2−x

6



4

8 points

4. Given the following power series ∑∞
n=0 an(x − 2)n we know that at x = 0 the series

converges and at x = 8 the series diverges. What do we know about the following values?

4.(a). At x = 3 the series
∞

∑
n=0

an(x− 2)n is:

(i) Convergent X
(ii) Divergent

(iii) We cannot determine its convergence/divergence with the given information.

4.(b). At x = −4 the series
∞

∑
n=0

an(x− 2)n is:

(i) Convergent
(ii) Divergent

(iii) We cannot determine its convergence/divergence with the given information. X

4.(c). At x = 9 the series
∞

∑
n=0

an(x− 2)n is:

(i) Convergent
(ii) Divergent X

(iii) We cannot determine its convergence/divergence with the given information.

4.(d). The following series
∞

∑
n=0

an is:

(i) Convergent X
(ii) Divergent

(iii) We cannot determine its convergence/divergence with the given information.

SOLUTION

In a little more detail:

The given power series is centered at a = 2, converges at x = 0, and diverges at x = 8.
Graphically we have
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-6 -4 -2 0 2 4 6 8 10

a

Since the convergent point x = 0 is distance 2 from the center a = 2, the radius of
convergence is at least 2. Similarly, since the divergent point x = 8 is distance 6 from the
center a = 2, the radius of convergence is at most 6. Below we have the green interval
[0, 4) indicating points of guaranteed convergence, the red intervals (−∞,−4) ∪ [8, ∞)
indicating points of guaranteed divergence, and the yellow intervals indicating points
of uncertainty, where we cannot determine convergence or divergence with the given
information. Note that the points x = −4, 4 are in the yellow interval.

-6 -4 -2 0 2 3 4 6 8 9 10

a

(a) x = 3 is in the green interval so the series converges there.
(b) x = −4 is in the yellow interval so we cannot determine convergence.
(c) x = 9 is in the red interval so the series is divergent there.

(d) Observe that
∞

∑
n=0

an =
∞

∑
n=0

an(1)n =
∞

∑
n=0

an(3− 2)n. This means we are looking for

convergence of the point x = 3. Clearly x = 3 is in the green interval so the series
converges there.
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12 points

5.(a). Write the definition for the nth degree Taylor polynomial of a function f (x) cen-
tered at x = a.

5.(b). Find the second degree Taylor polynomial for f (x) = ln(sec(x)) centered at π/4.

SOLUTION

(a) This is just writing the formula

Tn(x) = f (a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f (3)(a)
3!

(x− a)3 + · · ·

(b) The second degree Taylor polynomial has the formula

T2(x) = f (a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2

For the specific function f (x) = ln(sec(x)), we have to find f (π/4), f ′(π/4), and
f ′′(π/4).

f (π/4) = ln(sec(π/4)) = ln(2/
√

2)

f ′(x) =
1

sec(x)
· sec(x) tan(x) = tan(x)

f ′(π/4) = tan(π/4) = 1

f ′′(x) = sec2(x)

f ′′(π/4) = sec2(π/4) = (2/
√

2)2 = 2

Hence the Taylor polynomial is

T2(x) = ln(2/
√

2)+ 1(x−π/4)+
2
2!
(x−π/4)2 = ln(2/

√
2) + (x− π/4) + (x− π/4)2
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6

12 points

6.(a). Express the function f (x) = ln(1 + x3) as a power series centered about x = 0.

∞

∑
n=1

(−1)n−1x3n

n

6.(b). Express the definite integral
∫ 1

0
ln(1 + x3) dx as an infinite series.

∞

∑
n=1

(−1)n−1

n(3n + 1)

SOLUTION

(a) The Maclaurin series for ln(1 + x) is

ln(1 + x) =
∞

∑
n=1

(−1)n−1xn

n

Substituting x 7→ x3,

ln(1 + x3) =
∞

∑
n=1

(−1)n−1(x3)n

n
=

∞

∑
n=1

(−1)n−1x3n

n

(b) Using the series from part (a) and applying term-by-term integration,∫ 1

0
ln(1 + x3) dx =

∫ 1

0

∞

∑
n=1

(−1)n−1x3n

n
dx =

∞

∑
n=1

∫ 1

0

(−1)n−1x3n

n
dx

=
∞

∑
n=1

(−1)n−1

n

∫ 1

0
x3n dx

=
∞

∑
n=1

(−1)n−1

n

[
x3n+1

3n + 1

]1

0

=
∞

∑
n=1

(−1)n−1

n
1

3n + 1

=
∞

∑
n=1

(−1)n−1

n(3n + 1)
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12 points

7.(a). Fill in the blanks to complete the statement of Taylor’s Inequality:

If | f (n+1)(x)| ≤ M on the interval between the center, a, and the point of approxima-

tion x, then the remainder, Rn(x), of the nth degree Taylor polynomial Tn(x), satisfies the
inequality:

|Rn(x)| ≤ M
(n + 1)!

|x− a|n+1

7.(b). Use Taylor’s inequality to determine the number of terms of the Maclaurin series
for ex that should be used to estimate the number e with an error less than 0.6. Clearly

justify your choice of M. 3 or more terms

SOLUTION

The Maclaurin series for f (x) = ex is

ex =
∞

∑
n=0

xn

n!

Since we want to approximate e = e1 = f (1), x is equal to 1. Taylor’s Inequality for the
above Maclaurin series gives us

|Rn(1)| ≤
M

(n + 1)!
|1− 0|n+1 =

M
(n + 1)!

To find M, note that f (n+1)(x) = ex for all positive integers n. Then

M ≥ | f (n+1)(1)| = |e1| = e

Ironically, finding a good choice for M requires us to guess how big e can be. Nevertheless,
we will choose M = 3 to avoid any circular arguments. Lastly we bound the Taylor’s
Inequality by our error margin of 0.6:

|Rn(1)| ≤
3

(n + 1)!
< 0.6 =

3
5
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Solving the inequality, we get
3

(n + 1)!
<

3
5

5 < (n + 1)!

Since 5 < 6 = (2 + 1)!, choice of n ≥ 2 guarantees that the nth degree Taylor polynomial
Tn(1) approximates e to within our error margin of 0.6. Since Tn(x) contains n + 1 terms,

we need at least three terms of the Maclaurin series.
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8 points

8. Each of the following slope fields represents one of the following differential equa-
tions. Match each slope field to the corresponding dfferential equation.

(a)
dy
dx

=
xy
2

(II)

(b)
dy
dx

= y− x− 2 (III)

(c)
dy
dx

= x + 2 (I)

(d)
dy
dx

= ex (IV)

8. (8 points) Each of the following slope fields represents one of the following di↵erential

equations. Match each slope field to the corresponding di↵erential equation.

(a)
dy

dx
=

xy

2

(b)
dy

dx
= y � x � 2

(c)
dy

dx
= x + 2

(d)
dy

dx
= ex2

(I)

x

y

1

1

(II)

x

y

1

1

(III)

x

y

1

1

(IV)

x

y

1

1

Page 8 of 9
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SOLUTION

Here are more details on the solutions:

8.(a). When x = 0 or y = 0, dy/dx = 0 and we see that (II) has slope of 0 along the x and
the y axis.

8.(b). Along the diagonal line y = x, dy/dx = −2 and we see that (III) has the slope fixed
at −2.

8.(c). Along the vertical line x = −2, dy/dx = 0 and we see that (I) has a fixed slope of 0.

8.(d). Observe that the equation for dy/dx in (d) has no y. We see that the graphs (I) and
(IV) have the same slope for a fixed value of x. Hence we are down to two choices (I) and
(IV). But it can’t be (I) since its slopes are 0 when x is a negative number. ex is never 0 so
we eliminate (I) as a possibility and we have (IV) as our answer.
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6 points
9. Find the sum of the series

∞

∑
n=0

(−1)n

2n + 1
= 1− 1

3
+

1
5
− 1

7
+

1
9
− · · ·

= π/4

SOLUTION

Recall that the Maclaurin series for arctan x is

arctan x =
∞

∑
n=0

(−1)n x2n+1

2n + 1

Plugging in x = 1, we get

arctan 1 =
∞

∑
n=0

(−1)n 12n+1

2n + 1
=

∞

∑
n=0

(−1)n 1
2n + 1

=
∞

∑
n=0

(−1)n

2n + 1

and arctan 1 = π/4 .
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10 points
10. Assume we approximate the sum of the series

∞

∑
n=1

2
n2

by using the first 3 terms. Give an upper bound for the error involved in the approxima-

tion by using the Remainder Estimate for the Integral Test. R3 ≤
2
3

SOLUTION

Let f (x) =
2
x2 . To apply the Remainder Estimate for the Integral Test, we first check the

conditions necessary. Firstly,
2
x2 is differentiable since f ′(x) =

−4
x3 and so it is continuous.

f (x) is also positive for any positive value of x and it is decreasing since it is a reciprocal
of x2/2, an increasing function. Lastly, we know that the series converges via the p-Test
with p = 2 > 1.

We are using the first three terms so we want to estimate the error associated with s3,
the partial sum up to n = 3. Then the Integral Test gives us∫ ∞

3+1
f (x) dx ≤ R3 ≤

∫ ∞

3
f (x) dx

Since we are only interested in the upper bound, we compute the integral on the right
side.

R3 ≤
∫ ∞

3

2
x2 dx = lim

t→∞

∫ t

3

2
x2 dx

= lim
t→∞

2
∫ t

3

1
x2 dx

= lim
t→∞

2
[
−x−1

]t

3

= lim
t→∞
−2
[

1
t
− 1

3

]
= −2

[
0− 1

3

]
=

2
3

Hence R3 ≤
2
3

.
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