1. $\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n+1}} =$ A) $\frac{2}{3} \checkmark$ B) $\frac{1}{2}$ C) $\frac{2}{9}$ D) $\frac{3}{4}$ E) $\frac{4}{3}$

2. Some of the following four statements concerning a series $\sum_{n=1}^{\infty} b_n$ must be false, no matter what the series is. Which?

I. The sequence $\{b_n\}$ and the series $\sum_{n=1}^\infty b_n$ both converge.

- II. The sequence $\{b_n\}$ converges but the series $\sum_{n=1}^{\infty} b_n$ diverges.
- III. The sequence $\{b_n\}$ diverges but the series $\sum_{n=1}^{\infty} b_n$ converges.

IV. The sequence $\{b_n\}$ and the series $\sum_{n=1}^\infty b_n$ both diverge.

- A) I must be false.
- B) II must be false.
- C) III must be false. \checkmark
- D) IV must be false.
- E) Both II and III must be false.

- 3. $\lim_{n \to \infty} \frac{n \sin n}{n^2 + n + 2}$ A) 1 B) 0 \checkmark C) -1 D) $\frac{1}{4}$
 - E) The sequence diverges.
- 4. Which statement is true, concerning the series

(1)
$$\sum_{n=1}^{\infty} \frac{1}{n+2}$$
 (2) $\sum_{n=1}^{\infty} \frac{n^2}{2n^3-1}$

- A) Both converge.
- B) (1) converges, (2) diverges.
- C) (1) converges, (2) diverges.
- D) Both diverge. \checkmark
- E) None of A, B, C, D is true.

5. The first Taylor polynomial of $f(x) = rac{4}{\sqrt{5-x}}$ about a=1 is?

A)
$$2 + \frac{x-1}{4} \checkmark$$

B) $4 + \frac{x+1}{\sqrt{5}}$
C) $2 - \frac{x+1}{\sqrt{5}}$
D) $2 + \frac{x-1}{2}$
E) $1 + \frac{x-1}{\sqrt{5}}$

- 6. Which is true for the series ∑_{n=1}[∞] a_n and ∑_{n=1}[∞] b_n?
 I. If a_n ≥ 0 for all n and lim_{n→∞} a_n = 0, then ∑_{n=1}[∞] a_n converges.
 II. If b_n ≥ a_n ≥ 0 for all n and ∑_{n=1}[∞] a_n diverges, then ∑_{n=1}[∞] b_n also diverges.
 III. If a_n ≥ 0 for all n then ∑_{n=1}[∞] (-1)ⁿa_n converges.
 A) Only I.
 B) Only II. ✓
 C) Both I and II.
 - D) All are false.
 - E) Both II and III.
- 7. Use the Maclaurin series generated by $f(x) = \cos(x^2)$ to compute $\int_0^{1/2} \cos(x^2) \, dx$.

A)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)2^{n+2}(2n)!}$$

B) $\sum_{n=0}^{\infty} \frac{1}{(4n+1)4^n(2n+1)!}$
C) $\sum_{n=0}^{\infty} \frac{2^n}{(4n+4)(2n)!}$
D) $\sum_{n=0}^{\infty} \frac{(-1)^n}{(8n+2)16^n(2n)!} \checkmark$
E) $\sum_{n=0}^{\infty} \frac{1}{(2n+1)2^{n+1}(2n+1)!}$

- 8. Let $T_3(x)$ denote the third degree Taylor polynomial, centered at 0, of $f(x) = e^{-x}$. According to Taylor's Inequality, $T_3(1)$ approximated e^{-1} with an error \leq
 - A) $\frac{1}{64}$ B) $\frac{1}{48}$ C) $\frac{1}{36}$ D) $\frac{1}{32}$ E) $\frac{1}{24} \checkmark$
- 9. The interval of convergence of the power series $\sum_{n=1}^\infty \frac{2^n(x-1)^n}{n}$ is
 - A) [1/2, 3/2) 🗸
 - B) (-1, 3]
 - C) [1/2, 3]
 - D) [1/2, 3]
 - E) (1/2, 3/2)
- 10. We approximate $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n(2n-1)}$ by its N-th partial sum. What is the smallest N for which
 - the Alternating Series Error Estimate guarantees that the error will be $< 10^{-2}$?
 - A) 3
 - **B)** 4
 - C) 5 🗸
 - **D)** 6
 - E) 8

- 11. Is the series $\sum_{n=0}^{\infty} \sqrt{\frac{1}{2^n} + \frac{3}{4^n}}$ convergent or divergent?
 - A) It is convergent by comparison with $\sum_{n=0}^{\infty} rac{1}{(\sqrt{2})^n} \checkmark$
 - B) It is divergent by comparison with $\sum_{n=0}^{\infty} rac{1}{(\sqrt{2})^n}$
 - C) It is divergent by limit comparison with $\sum\limits_{n=0}^\infty \frac{1}{(\sqrt{2})^n}$
 - D) It is convergent by comparison with $\sum_{n=0}^{\infty} \frac{\sqrt{3}}{2^n}$
 - E) None of the above answers is correct.
- 12. Suppose the power series $\sum_{n=1}^{\infty} c_n x^n$ converges when x = -3 and diverges when x = 4.

Which of the following is(are) always true?

- $\mathsf{I.} \ \sum_{n=1}^{\infty} c_n (-2)^n \ \mathsf{converges.} \qquad \mathsf{II.} \ \sum_{n=1}^{\infty} c_n (-5)^n \ \mathsf{converges.} \qquad \mathsf{III.} \ \sum_{n=1}^{\infty} c_n (2.5)^n \ \mathsf{converges.}$
- A) I and II only.
- B) I and III only. \checkmark
- C) II only.
- D) I, II, and III
- E) None of the above answers is correct.

- 13. Find the coefficient of x^{12} in the Maclaurin series for $f(x) = \sin\left(\frac{x^4}{2}\right)$.
 - A) 0 B) $-\frac{1}{24}$ C) $\frac{1}{12}$ D) $-\frac{1}{48} \checkmark$ E) $\frac{1}{18}$
- 14. Which of the following is true?
 - I. The series $\sum_{n=2}^{\infty} (-1)^n \frac{1}{n \ln n}$ converges conditionally? II. The series $\sum_{n=2}^{\infty} (-1)^n \frac{1}{n(\ln n)^2}$ converges absolutely? III. The series $\sum_{n=1}^{\infty} (-1)^n \frac{\arctan n}{n^3}$ converges absolutely? A) I and II only. B) I and III only.
 - C) II only.
 - D) I, II, and III are true. \checkmark
 - E) None.

15. Evaluate the indefinite integral $\int \frac{x}{1+x^3} dx$ as a power series.

A)
$$\sum_{n=0}^{\infty} x^{3n} + C$$

B) $\sum_{n=0}^{\infty} (-1)^n x^{3n+1} + C$
C) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{3n+2}}{(3n+2)} + C$
D) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{3n+1}}{(3n+1)} + C$
E) $\sum_{n=0}^{\infty} \frac{x^{3n}}{3n} + C$

16. For what value(s) of p does the series $\sum_{n=1}^{\infty} \frac{n^{2p}+1}{\sqrt{n+2}}$ converge?

- A) $p < -rac{1}{2}$ B) $p \geq -rac{1}{2}$
- C) p < 0
- D) $p \ge 0$
- E) No values. ✓

17. Which of the following is true?

I. If
$$rac{1}{\ln n} \leq a_n$$
 for $n \geq 2$, then $\sum\limits_{n=2}^\infty a_n$ diverges.

II. The alternating series
$$\sum\limits_{n=1}^{\infty}(-1)^n\sqrt{rac{n+1}{4n+1}}$$
 converges.

III. If $\frac{1}{n} \leq b_n \leq \frac{1}{\sqrt{n}}$ and $b_n \geq b_{n+1}$, then $\sum_{n=1}^{\infty} (-1)^n b_n$ is conditionally convergent.

- A) I and II only.
- B) II and III only.
- C) I and III only. \checkmark
- D) I only.
- E) III only.
- 18. We would like to estimate the value of the series $s = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + 3}$ by its N-th partial sum,

 s_N , with an error less than 0.01, i.e., $|s - s_N| < 0.01$, using the Estimation Theorem for Alternating Series. What is the smallest value of N that gives us the estimate within the required error amount?

- **A)** 7
- **B)** 8
- C) 9 🗸
- **D)** 10
- **E)** 11

19. Let
$$f(x) = \sum_{n=1}^{\infty} \frac{3n}{(n+1)^2} (x-1)^n$$
. Then $f'''(1) =$
A) 10
B) $\frac{14}{5}$
C) $\frac{13}{6}$
D) $\frac{27}{8} \checkmark$
E) $\frac{1}{9}$
20. $\lim_{n \to \infty} \frac{\sqrt{2n^2 + 3(-1)^n}}{n+4} =$
A) $\sqrt{2} \checkmark$
B) 2
C) 1
D) 0
E) ∞

 $21.\ \mbox{Which of the following series}$

(I)
$$\sum_{n=1}^{\infty} (-1)^n \sqrt{\frac{2n+3}{n+1}}$$
 (II) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{2^n}$ (III) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$

converge?

- A) II and III only. \checkmark
- B) II only
- C) I and II only.
- D) None
- E) I, II, and III.

22. Which of the following power series represents xe^{-x^2} ?

$$\begin{aligned} \mathbf{A} &) - \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} \\ \mathbf{B} &\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \\ \mathbf{C} &\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} \\ \mathbf{D} &\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{n!} \checkmark \end{aligned}$$

E)
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{(n^2+1)!}$$

23. The series
$$\sum_{n=1}^{\infty} \left(\sin\left(\frac{1}{n^2}\right) \right) \left(e^{1/n} \right)$$

- A) Diverges by the Integral Test.
- B) Diverges by Comparison Test to the harmonic series.
- C) Diverges by the Test for Divergence.
- D) Converges by the Ratio Test.
- E) Converges by the Limit Comparison Test to $\sum\limits_{n=1}^\infty rac{1}{n^2} \checkmark$

24. Let f(x) be a function defined for $x \ge 1$, such that $\frac{1}{\sqrt{x}} \le f(x) \le 1$, for all $x \ge 1$. What can be said about the series

I.
$$\sum_{n=1}^{\infty} \frac{f(n)}{\sqrt{n}}$$
 II. $\sum_{n=1}^{\infty} \frac{f(n)}{n^2}$

A) Both converge.

MA 2300

- B) I diverges and II converges. \checkmark
- C) I converges and II diverges.
- D) Both diverge.
- E) II converges, but I might converge or diverge.
- 25. Use the limit comparison test to detrmine the if the series below converge or diverge.

I.
$$\sum_{n=1}^{\infty} \ln\left(1+\frac{1}{n}\right)$$
 II. $\sum_{n=1}^{\infty} \ln\left(1+\frac{1}{n^2}\right)$

- A) Both converge.
- B) I diverges and II converges. \checkmark
- C) I converges and II diverges.
- D) Both diverge.
- E) II converges, but I might converge or diverge.

26. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} (-1)^n \frac{n^4(x-1)^n}{3^n(n^5+2)}$

- **A)** (2,4)
- **B)** [0, 3)
- C) (−2,4] ✓
- **D)** (0,3]
- **E)** [-2, 4)

27.
$$\sum_{n=3}^{\infty} \left(\frac{1}{n+2} - \frac{1}{n+3} \right) =$$

A) $\frac{1}{2}$
B) $\frac{1}{3}$
C) $\frac{1}{4}$
D) 1
E) $\frac{1}{5} \checkmark$

28. The integral
$$\int_0^1 rac{e^x}{\sqrt{x}}\,dx$$
 is equal to

A)
$$\sum_{n=0}^{\infty} \frac{2}{n!(2n+1)} \checkmark$$

B) $\sum_{n=0}^{\infty} \frac{1}{n!(n+1)}$
C) $\sum_{n=1}^{\infty} (-1)^n \frac{1}{(n+1)\sqrt{n}}$
D) $\sum_{n=0}^{\infty} \frac{1}{(n+1)!}$
E) $\sum_{n=0}^{\infty} \frac{e^n}{\sqrt{n+1}}$

30. Let a_n = cos(1/n)/(2n+1). Which of the following is true?
A) The sequence {a_n} is divergent and the series ∑_{n=1}[∞] a_n is divergent.
B) The sequence {a_n} is convergent and the series ∑_{n=1}[∞] a_n is divergent. ✓
C) The sequence {a_n} is divergent and the series ∑_{n=1}[∞] a_n is convergent.
D) The sequence {a_n} is convergent and the series ∑_{n=1}[∞] a_n is convergent.

E) None of A, B, C, or D are true.

31. Evaluate
$$\lim_{x \to 0} \frac{x^6 - 12x^2 + 24 \arctan(x^2/2)}{x^{10}}$$

- A) $\frac{3}{16}$ B) $\frac{3}{20} \checkmark$ C) $\frac{3}{10}$
- **D)** 0
- E) The limit does not exist.

33. If the Maclaurin series of a function f(x) is $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{3n(n+6)}$. Then $f^{(6)}(0) =$

A)
$$\frac{16}{3}$$

B) $\frac{20}{3}$
C) $\frac{10}{3} \checkmark$
D) 0

E) None of these.

- 34. Use Taylor's Inequality to determine the maximum error in the approximation of cos(1) by $T_4(1)$ if $T_4(1)$ is the fourth Taylor polynomial of f(x) = cos x centered at 0.
 - A) $\frac{1}{120} \checkmark$ B) $\frac{13}{120}$ C) $\frac{1}{24}$ D) $\frac{13}{24}$ E) $\frac{\pi}{8}$

35. Which of the following is the Maclaurin series for the function $f(x) = \ln \frac{1-x}{1+x}$

 $\begin{array}{l} \mathsf{A}) -2 \left[x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \cdots \right] \checkmark \\ \mathsf{B}) \quad \frac{1}{2} \left[x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots \right] \\ \mathsf{C}) \quad - \left[x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \cdots \right] \\ \mathsf{D}) \quad \frac{1}{2} \left[x + \frac{x^2}{2} + \frac{x^4}{4} + \frac{x^6}{6} + \cdots \right] \\ \mathsf{E}) \quad 2 \left[x - \frac{x^2}{2} + \frac{x^4}{4} - \frac{x^6}{6} + \cdots \right] \end{array}$

- 36. The series $\sum_{n=1}^{\infty} (-1)^n rac{\arctan n}{n^2+1}$ is
 - A) absolutely convergent. \checkmark
 - B) conditionally convergent.
 - C) divergent since $\lim_{n o \infty} (-1)^n rac{\arctan n}{n^2+1}
 eq 0$
 - D) divergent even though $\lim_{n o \infty} (-1)^n rac{\arctan n}{n^2 + 1} = 0$
 - E) divergent by the ratio test.
- 37. Use a Maclaurin series and the Estimation Theorem for Alternating Series to approximate $\sin\left(\frac{1}{2}\right)$ using the fewest number of terms necessary so that the error is less than 0.001
 - A) $\frac{1}{2}$ B) $\frac{23}{48} \checkmark$ C) $\frac{3}{4}$ D) $\frac{33}{40}$ E) $\frac{41}{60}$

- 38. In the Taylor series expansion for $f(x) = \frac{x-1}{x-2}$ about a = 1, the coefficient of $(x-1)^{10}$ is
 - A) -2
 - **B)** -1
 - **C**) 0
 - D) 1 ✓
 - E) 2
- 39. Which of the following series converge?
 - I. $\sum_{n=2}^{\infty} \frac{\sqrt{n+1}}{n^2}$ II. $\sum_{n=1}^{\infty} \frac{n^n}{n!}$ III. $\sum_{n=1}^{\infty} \frac{1}{5^n-2}$ IV. $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[4]{n}}$
 - A) III only.
 - B) III and IV only.
 - C) All four.
 - D) I, III, and IV only. \checkmark
 - E) II, III, and IV only.
- 40. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{10^n}{n!} (x-1)^n$
 - A) (0,2)
 - **B)** [0,2)
 - **C)** (9,11)
 - **D)** [9, 11)
 - E) $(-\infty,\infty)$ 🗸

42. The first three non-zero terms of the McLaurin series of $f(x) = x \ln(1+x^2)$ are

A)
$$x - \frac{1}{3}x^3 + \frac{1}{5}x^5$$

B) $x^2 - \frac{1}{2}x^4 + \frac{1}{3}x^6$
C) $x^2 - \frac{1}{2}x^4 + \frac{1}{6}x^6$
D) $x^3 - \frac{1}{2}x^5 + \frac{1}{3}x^7 \checkmark$
E) $x^3 - \frac{1}{5}x^5 + \frac{1}{7}x^7$

43. If
$$\sum_{n=1}^{\infty} |a_n|$$
 converges, then $\sum_{n=1}^{\infty} a_n$ converges.

44. If $a_n > 0$ and $\lim_{n \to \infty} na_n = 2$, then $\sum_{n=1}^{\infty} a_n$ diverges.

45. If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{2}$, then $\sum_{n=1}^{\infty} a_n$ converges.

46. $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$ converges conditionally.

A) TRUE

B) FALSE 🗸

47.
$$\sum_{n=1}^{\infty} a_n = \lim_{N \to \infty} \left(\sum_{n=1}^{N} a_n \right).$$

A) TRUE ✓ B) FALSE

48.
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$
 converges.

A) TRUE B) FALSE
$$\checkmark$$

49.
$$\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$$
 converges.

- 50. If $f(x) = 4 + x x^2 + x^3 x^4 + \cdots$, then f'''(0) = 6.
 - A) TRUE ✓ B) FALSE

51. If $f(x) = \sum_{n=1}^{\infty} \frac{n}{(n+1)!} x^n$, then $f^{(5)}(0) = \frac{1}{6}$.

- A) TRUE B) FALSE \checkmark
- 52. The radius of convergence of the power series $\sum_{n=1}^\infty 2^n x^n$ is 2.
 - A) TRUE B) FALSE \checkmark
- 53. The radius of convergence of $\sum_{n=1}^{\infty} 2^n x^n$ is equal to the radius of convergence of $\sum_{n=1}^{\infty} \sqrt{n} 2^n x^n$.

54. If $0 \le a_n \le b_n$ and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

- A) TRUE ✓ B) FALSE
- 55. If $0 \le b_n \le a_n$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.
 - A) TRUE ✓ B) FALSE