1. What is the Maclaurin series of $f(x)=\frac{2}{(1+x)^{3}}$?
A) $\sum_{n=0}^{+\infty}(-1)^{n} \frac{(n+1)(n+2)}{2} x^{n}$
B) $\sum_{n=0}^{+\infty}(-1)^{n}(n+1)(n+2) x^{n} \checkmark$
C) $\sum_{n=0}^{+\infty}(-1)^{n-1} \frac{(n+1)(n+2)}{2} x^{n}$
D) $\sum_{n=0}^{+\infty}(-1)^{n}(n+1)(n+2) x^{n}$
E) $\sum_{n=0}^{+\infty} \frac{(n+1)(n+2)}{2} x^{n}$
2. If the Maclaurin series of a fuction $f(x)$ is $\sum_{n=1}^{+\infty}(-1)^{n} \frac{x^{n}}{3 n(n+6)}$ then $f^{(6)}(0)$ is equal to
A) $\frac{5}{3}$
B) $\frac{5}{2}$
C) $\frac{10}{3}$
D) $\frac{9}{7}$
E) $\frac{8}{5}$
3. Find the interval of convergence of $\sum_{n=1}^{+\infty} \frac{(-1)^{n} 3^{n}}{n \sqrt{n}} x^{n}$
A) $[0,1 / 3]$
B) $(-1 / 3,1 / 3)$
C) $[-1 / 3,1 / 3)$
D) $(-1 / 3,1 / 3]$
E) $[-1 / 3,1 / 3] \checkmark$
4. Calculate the first non-zero term of the Maclaurin series of $f(x)=\ln (\sec x)$
A) $\frac{x^{2}}{2} \checkmark$
B) $-\frac{x^{2}}{2}$
C) x^{2}
D) $-x^{2}$
E) $\frac{x^{3}}{6}$
5. Knowing that the Maclaurin series of $\ln (1+x)$ is given by

$$
\ln (1+x)=\sum_{n=1}^{+\infty}(-1)^{n-1} \frac{x^{n}}{n}
$$

find the smallest number of terms of the series that one needs to add to compute $\ln (1.1)$ with an error less than or equal to 10^{-8}.
A) 8
B) 3
C) 5
D) 9
E) $7 \checkmark$
6. The Maclaurin series for $f(x)=\frac{x}{\left(1+x^{2}\right)^{2}}$ is:
A) $\sum_{n=1}^{\infty}(-1)^{n} x^{2 n}$
B) $\sum_{n=1}^{\infty}(-1)^{n} 2 n x^{2 n-1}$
C) $\sum_{n=1}^{\infty}(-1)^{n} n x^{2 n-1}$
D) $\sum_{n=1}^{\infty}(-1)^{n+1} n x^{2 n-1} \checkmark$
E) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}$
7. Find the first three terms of the Taylor series for $f(x)=\cos x$ about $a=\frac{\pi}{3}$,
A) $\frac{1}{2}-\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{3}\right)-\frac{1}{4}\left(x-\frac{\pi}{3}\right)^{2} \checkmark$
B) $\frac{1}{2}+\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{3}\right)+\frac{1}{4}\left(x-\frac{\pi}{3}\right)^{2}$
C) $\frac{1}{2}-\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{3}\right)-\frac{1}{2}\left(x-\frac{\pi}{3}\right)^{2}$
D) $\frac{1}{2}+\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{3}\right)-\frac{1}{4}\left(x-\frac{\pi}{3}\right)^{2}$
E) $\frac{1}{2}-\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{3}\right)+\frac{1}{2}\left(x-\frac{\pi}{3}\right)^{2}$
8. Use the first two non-zero terms of the Maclaurin series of $\ln (\cos x)$ to estimate $\int_{0}^{1} \ln (\cos x) d x$
A) $\frac{1}{5}$
B) $-\frac{1}{5}$
C) $\frac{1}{6}$
D) $\frac{11}{60}$
E) $-\frac{11}{60} \checkmark$
9. If we compute the sum of the fewest terms necessary to guarantee that the error is less than 0.05, using Estimation Theorem for Alternating Series, then what is the estimate for e^{-1} ?
A) $\frac{11}{8}$
B) $\frac{3}{8}$
C) $\frac{3}{7}$
D) $\frac{2}{5}$
E) $\frac{1}{3} \checkmark$
10. Suppose that the series $\sum_{n=1}^{+\infty} c_{n}(x-3)^{n}$ converges when $x=1$ and diverges when $x=7$.

From the above information, which of the following statements can we conclude to be true?
I. The radius of convergence is $R \geq 2$.
II. The power series converges at $x=4.5$
III. The power series diverges at $\boldsymbol{x}=\mathbf{6 . 5}$
A) I and II only
B) I and III only
C) II and III only
D) All of them
E) None of them
11. Find the coefficient of x^{6} in the power series expansion of $\frac{2}{1+2 x^{2}}$
A) 8
B) -8
C) 32
D) $-16 \checkmark$
E) -64
12. The power series representation (centered at $a=0$) and the interval of convergence for $f(x)=\ln \left(4-x^{2}\right)$ are:
A) $-\sum_{n=0}^{+\infty} \frac{x^{2 n+2}}{(2 n+2) 4^{n+1}} \quad I=(-2,2)$
B) $-2 \sum_{n=0}^{+\infty} \frac{x^{2 n+2}}{(2 n+2) 4^{n+1}} \quad I=(-2,2)$
C) $-2 \sum_{n=0}^{+\infty} \frac{x^{2 n+2}}{(2 n+2) 4^{n+1}}+\ln 4 \quad I=(-2,2) \checkmark$
D) $-2 \sum_{n=0}^{+\infty} \frac{x^{2 n+2}}{(2 n+2) 4^{n+1}}+\ln 4 \quad I=[-2,2)$
E) $\quad-\frac{1}{2} \sum_{n=0}^{+\infty} \frac{x^{2 n+2}}{(2 n+2) 4^{n+1}}+\ln 4 \quad I=(-2,2)$
13. Using Maclaurin series and EstimationTheorem for alternating series, we can obtain the approximation

$$
\int_{0}^{0.1} \frac{1}{1+x^{2}} d x \approx 0.1-\frac{(0.1)^{3}}{3} \text { with error } \leq c
$$

The value of c is
A) $(0.1)^{3}$
B) $(0.1)^{5}$
C) $(0.1)^{7}$
D) $\frac{(0.1)^{3}}{3!}$
E) $\frac{(0.1)^{5}}{5} \checkmark$
14. Find the coefficient of x^{5} in the power series expansion of $\frac{x^{2}+1}{x-2}$
A) $-\frac{1}{64}$
B) $\frac{3}{64}$
C) $-\frac{3}{64}$
D) $\frac{5}{64}$
E) $-\frac{5}{64}$
15. Find the interval of convergence for the Taylor series $\sum_{n=0}^{+\infty} \frac{3^{n}}{n^{n}}(x-5)^{n}$
A) $\left(-\frac{1}{3}, \frac{1}{3}\right)$
B) $\left(\frac{14}{3}, \frac{16}{3}\right)$
C) $\left(\frac{15-e}{3}, \frac{15+e}{3}\right)$
D) $\left(\frac{15-e}{3}, \frac{15+e}{3}\right]$
E) $(-\infty, \infty) \checkmark$
16. Which of the following is the interval of convergence of the power series $\sum_{n=1}^{+\infty}(-1)^{n} \frac{n^{2}(x-2)^{n}}{3^{n}\left(n^{3}+2\right)}$
A) $(0,6)$
B) $[0,6)$
C) $(-1,5] \checkmark$
D) $[-1,5)$
E) $[-1,5]$
17. Let $f(x)$ be the function which is represented by the power series

$$
f(x)=\sum_{n=1}^{+\infty}(-1)^{n} \frac{(x-1)^{n}}{n^{3}}
$$

The fifth derivative of f at $x=1$ is
A) $\frac{1}{2}$
B) $-\frac{37}{81}$
C) $-\frac{24}{25}$
D) $\frac{25}{96}$
E) $\frac{1}{4}$
18. Find the coefficient of x^{4} of the Maclaurin series of $f(x)=\sqrt{1+x}$
A) $\frac{1}{57}$
B) $-\frac{75}{128}$
C) $-\frac{5}{128}$
D) $\frac{8}{57}$
E) $\frac{9}{77}$
19. Find the Taylor series of $f(x)=\frac{1}{5-x}$ centered at $a=1$
A) $\sum_{n=0}^{+\infty} \frac{(x-1)^{n}}{5^{n}}$
B) $\sum_{n=0}^{+\infty} \frac{(x-1)^{n}}{5^{n+1}}$
C) $\sum_{n=0}^{+\infty} \frac{(x-1)^{n}}{5^{n} n!}$
D) $\sum_{n=0}^{+\infty} \frac{(x-1)^{n}}{4^{n+1}} \checkmark$
E) $\sum_{n=0}^{+\infty} \frac{(x-1)^{n}}{4^{n}}$
20. Find the Maclaurin series of $\int x^{2} \sin x d x$
A) $\sum_{n=0}^{+\infty}(-1)^{n} \frac{x^{2 n+3}}{(2 n+3)!}$
B) $\sum_{n=0}^{+\infty}(-1)^{n} \frac{x^{2 n+3}}{(2 n+1)!}$
C) $\sum_{n=0}^{+\infty}(-1)^{n} \frac{x^{2 n+3}}{(2 n+3)(2 n+1)!}$
D) $\sum_{n=0}^{+\infty}(-1)^{n} \frac{x^{2 n+4}}{(2 n+4)(2 n+1)!} \checkmark$
E) $\sum_{n=0}^{+\infty}(-1)^{n} \frac{x^{2 n+4}}{(2 n+4)!(2 n+1)!}$
21. Find the Maclaurin series of $f(x)=\frac{1}{(1-x)^{4}}$
A) $\sum_{n=3}^{+\infty}(-1)^{n} \frac{n(n-1)(n-2)}{6} x^{n-3}$
B) $\sum_{n=3}^{+\infty} \frac{n(n-1)(n-2)}{6} x^{n-3} \checkmark$
C) $\sum_{n=2}^{+\infty}(-1)^{n} n(n-1) x^{n-2}$
D) $\sum_{n=2}^{+\infty} \frac{x^{n-2}}{n(n-1)}$
E) $\sum_{n=2}^{+\infty} \frac{x^{n-2}}{2 n(n-1)}$
22. Use a Taylor polynomial to approximate $\int_{0}^{1} e^{-x^{3}} d x$ with error less than 0.01 . The smallest number of terms that are needed for this accuracy is
A) 2
B) $3 \checkmark$
C) 4
D) 5
E) 6
23. Determine the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+3)(2 n+1)}$
A) $\frac{\pi}{2}$
B) $\frac{\pi-2}{4} \checkmark$
C) $\frac{\pi-1}{4}$
D) $\frac{\pi-4}{4}$
E) $\frac{\pi}{6}$
24. The first 4 nonzero terms in the Maclaurin series of $f(x)=(4+x)^{3 / 2}$ are:
A) $8+3 x-\frac{3 x^{2}}{8}+\frac{x^{3}}{16}$
B) $8+3 x+\frac{3 x^{2}}{16}-\frac{x^{3}}{128} \checkmark$
C) $1+\frac{3 x}{2}+\frac{3 x^{2}}{4}-\frac{3 x^{3}}{8}$
D) $1+\frac{3 x}{2}+\frac{3 x^{2}}{8}-\frac{x^{3}}{8}$
E) $1+\frac{3 x}{2}-\frac{3 x^{2}}{16}+\frac{x^{3}}{64}$
25. Suppose that the power series

$$
\sum_{n=0}^{\infty} c_{n}(x-5)^{n}
$$

converges when $x=2$ and diverges when $x=10$.
From the above information, which of the following statements can we conclude to be true?

I: The radius of convergence R satisfies $3 \leq R \leq 5$.

II: We can NOT determine the interval of convergence from the above information only.
III: The derivative of the power series is $\sum_{n=1}^{\infty} n c_{n}(x-5)^{n-1}$, which converges when $x=3$.
A) I and II only
B) I and III only
C) II and III only
D) All of them \checkmark
E) None of them

