Math 2300, Midterm 2
 October 23, 2017

PRINT YOUR NAME:

PRINT INSTRUCTOR'S NAME:

\qquad

Mark your section/instructor:

\square	Section 001	Brendt Gerics	$8: 00-8: 50$
\square	Section 002	Tyler Schrock	$8: 00-8: 50$
\square	Section 003	Xingzhou Yang	$9: 00-9: 50$
\square	Section 004	Albert Bronstein	$9: 00-9: 50$
\square	Section 006	Sebastian Bozlee	10:00-10:50
\square	Section 007	Athena Sparks	$11: 00-11: 50$
\square	Section 008	Trevor Jack	$4: 00-4: 50$
\square	Section 009	Jun Hong	$12: 00-12: 50$
\square	Section 011	Isabel Corona	$1: 00-1: 50$
\square	Section 012	Hanson Smith	$2: 00-2: 50$
\square	Section 013	Noah Williams	$3: 00-3: 50$
\square	Section 014	John Willis	$3: 00-3: 50$
\square	Section 015	Robert Hines	$4: 00-4: 50$
\square	Section 016	Sarah Salmon	$4: 00-4: 50$
\square	Section 017	Xingzhou Yang	$8: 00-8: 50$
\square	Section 880	Trubee Davison	$2: 00-2: 50$

Question	Points	Score
1	10	
2	8	
3	10	
4	8	
5	10	
6	10	
7	10	
8	5	
9	10	
10	7	
11	12	
Total:	100	

- No calculators or cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit, except where otherwise indicated. Use full mathematical or English sentences.
- You have 90 minutes and the exam is 100 points.
- You do not need to simplify numerical expressions. For example leave fractions like $100 / 7$ or expressions like $\ln (3) / 2$ as is.
- When done, give your exam to your instructor, who will mark your name off on a photo roster.
- We hope you show us your best work!

1. (10 points) Set up, but do not evaluate, an integral that represents the work required to empty the tank by pumping all of the water to the top of the tank. You may use $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ for the density of water and $g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$ for the acceleration due to gravity.

2. (8 points) Consider a lamina of uniform density bounded by the lines $x+y=1$, $x=0$, and $y=0$. Compute the center of mass (\bar{x}, \bar{y}) of the lamina.

$$
\left.=2 \int_{0}^{1} x(1-x) d x=2\left(\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}\right)
$$

$$
=2\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{2}{6}=\frac{1}{3}
$$

$$
\bar{y}=\frac{1}{3}
$$

3. (10 points) Consider the serif $\sum_{n=2}^{\infty} \frac{3^{n}}{5^{n-1}}$. Determine if the series converges or
diverges. If the series converges, find the sum of the series.
For Exam 2, either geometric
or telescoping

$$
r=\frac{a_{n+1}}{a_{n}}=\frac{\frac{3^{n+1}}{5^{n+1-1}}}{\frac{3^{n}}{5^{n-1}}}=\frac{3^{n+1}}{3^{n}} \cdot \frac{5^{n-1}}{5^{n}}=\frac{3}{5}
$$

Series will converge since $\left|\frac{3}{5}\right|<1$.

Q: What does it converge to?

$$
r=\frac{3}{5} \quad a=\text { "first term" }
$$

converges to

$$
\begin{aligned}
& \text { verges to } \\
& \frac{a}{1-r}=\frac{\frac{a}{5}}{1-\frac{3}{5}}=\frac{3^{2}}{2}=\frac{9}{5^{2-1}}=\frac{5}{\text { Page of 11 }}
\end{aligned}
$$

4. (a) (5 points) Multiple Choice. Suppose that $\sum_{n=1}^{\infty} a_{n}=5$ and $s_{N}=a_{1}+a_{2}+\cdots+a_{N}$.
Which one of these statements is true?

(II) $\lim _{n \rightarrow \infty} a_{n}=0$ and $\lim _{N \rightarrow \infty} s_{N}=0$

(IV) $\lim _{n \rightarrow \infty} a_{n}=0$ and $\lim _{N \rightarrow \infty} s_{N}=5$

Nth
partial sum

(I) 1

(II) 0
(III) 0.5

If $c=1,2,5$, by LCT both
series wald behave the same way
regarding convergence.
Page 4 of 11

For LCT, $\quad c \neq 0, c \neq+\infty$
5. (10 points) Determine if $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)$ converges or diverges. If the series converges, find the sum.
partial fractions

$$
\begin{aligned}
& \frac{1}{n(n+1)}=\frac{A}{n}+\frac{B}{n+1} \ldots \quad A=1, B=-1 \\
& S_{n}=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}\right)+\cdots \\
&+\left(\frac{1}{4}-\frac{1}{n+1}\right)=1-\frac{1}{n+1}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} 1-\frac{1}{n+1}=1
$$

converges to 1

$$
\begin{aligned}
& \text { geometric or } \\
& \text { telescoping } \\
& \frac{1}{n}-\frac{1}{n+1}= \\
& \frac{n+1}{n(n+1)}-\frac{n}{n(n+1)}=\frac{1}{n(n+1)} \\
& \text { this could he } \\
& \sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)= \\
& \text { starting } \\
& \text { point }
\end{aligned}
$$

6. Consider the series $\sum_{n=1}^{\infty} \frac{n}{e^{n^{2}}}$.

$$
\frac{n}{e^{n^{2}}} \leqslant \frac{e^{n^{2} / 2}}{e^{n^{2}}}=\frac{1}{e^{n^{2 / 2}}} \leq \frac{1}{e^{n / 2}}
$$

(a) (2 points) Which test will you use to determine the convergence of the sefries?

Integral Test or Ratio Test, or
(b) (3 points) Check that the hypothesis of the test are satisfied. If there are OCT no hypotheses for the test you've chosen, state 'none necessary for chosen test'.

$$
f(x)=\frac{x}{e^{x^{2}}}
$$

(1) f continues $[1, \infty)$
(2) f positive on $[1, \infty)$

$$
\frac{x}{e^{x^{2}}}>0 \text { for } x \in[1, \infty)
$$

(3) Decreasing:
(c) (5 points) Determine if the series converges or diverges.
if have
constant that's
increasing
obviasly decreasing so no derivative needed.

$$
\begin{aligned}
& \text { The integral } f^{\prime}(x)=\frac{1-2 x^{2}}{e^{x^{2}}} \\
& \text { test is } \\
& \text { satisfied. } \\
& \int_{1}^{\infty} \frac{x}{e^{x^{2}}} d x=0
\end{aligned}
$$

$$
\begin{gathered}
u=x^{2} \ldots \\
\left.=\lim _{b \rightarrow \infty}\left(-\frac{1}{2} e^{-x^{2}}\right]_{1}^{b}\right)
\end{gathered}
$$

$$
\begin{aligned}
& =\lim _{b \rightarrow \infty}\left(-\frac{1}{2} e^{-b^{2}}-\frac{1}{2} e^{-1^{2}}\right) \\
& =\frac{1}{2 e}
\end{aligned}
$$

Since improper integral converges then the series $\sum_{n=1}^{\infty} \frac{n}{e^{n^{2}}}$ converges also, by the Integral Test
7. Consider the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+1}}$.
(a) (2 points) Which test will you use to determine the convergence of the seres?

(b) (3 points) Check that the hypothesis of the test are satisfied. If there are no hypotheses for the test you've chosen, state 'none necessary for chosen test'.

$$
a_{n}=\frac{1}{\sqrt{n^{2}+1}}>0 \frac{b_{n}=\frac{1}{\sqrt{n^{2}}}=\frac{1}{n}>0}{\frac{1}{I} \text { know } \sum \frac{1}{n}}
$$

(c) (5 points) Determine if the series converges or diverges.
diverges.

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{\sqrt{n^{2}+1}}}{\frac{1}{n}}=
$$

$$
\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{2}+1}}=1=\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{2}\left(1+\frac{1}{n^{2}}\right)}}
$$

$$
=\lim _{n \rightarrow \infty} \frac{\pi}{x \sqrt{1+\frac{\pi}{n^{2}}}}=1=c
$$

Since c is a positive and
finite value, LCT is satisfied.
Since $\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} \frac{1}{n}$ diverges,
then $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+1}}$ diverges.

Mare pitfalls:

- By LCT, $\frac{1}{\sqrt{a^{2}+1}}$ dirties.

$$
\begin{aligned}
& \text { scrapi } \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c \\
& \text { aravion } \quad a_{n} \approx c b_{n} \\
& \sum_{n=1}^{\infty} a_{n} \approx \sum_{n=1}^{\infty} c b_{n} \\
& \uparrow \\
& \text { converges converges }
\end{aligned}
$$

Shaw absolute convergence $\sum_{n=1}^{\infty} \frac{1}{(n+4)^{2}}$ converges
8. Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(n+4)^{2}}$.
(a) (2 points) Show that this series converges using an appropriate test. Use AST. or PCT

to approximate the sum of the infinite series.

9. (10 points) Determine if the series $\sum_{n=1}^{\infty} \frac{(-1)(3) n!}{(2 n)!}$ converges absolutely, converges but not absolutely, or diverges.

conditional convergence
order to do this problem:
(1) First check absalde convergence.
(2) If does not converge absolutely, then check conditional convergence.
(3) If does does not converge conditionally, then diverges.

Ratio Test always tests for absolute convergence. Bc of absolute values.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{\left|\frac{(-x)^{n+1}\left(3^{n+1}\right)(n+1)!}{(2(n+1)!!}\right|}{\left|\frac{(-1)^{(3 n}-n!}{(2 n)!}\right|}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{3(n+1)}{(2 n+2)(2 n+1)}=0<1
\end{aligned}
$$

By Ratio Test, converges absolutely.
10. Determine if the following statements are always true, sometimes true, or never true.
(a) (3 points) Multiple choice. If $\sum_{n}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.
(I) Sometimes
(II) Always
(III) Never
(b) (4 points) Multiple choice. Let c_{n} be a sequence satisfying $\frac{1}{n^{2}}<c_{n}<\frac{1}{n}$

11. Multiple Choice. For each of the following sequences and series, determine the appropriate response.
(a) (2 points) $a_{n}=\frac{n}{n+1}$

$$
\lim _{n \rightarrow \infty} \frac{n}{n+1}=1
$$

(I) Converges
(II) Diverges
(b) (2 points) $c_{n}=(-1)^{n} \sqrt{n}$
(I) Converges

(c) (2 points) $\sum_{n=1}^{\infty} \frac{n-1}{2 n+1}$
(I) Converges

for

$$
\sigma=-\frac{1}{3}
$$

(II) Diverges $\left|-\frac{1}{3}\right|<1$
(f) (2 points) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}=\sum \frac{1}{n^{1,2}} \quad p=1 / 2<1$
(I) Converges

Page 11 of 11

$$
\begin{aligned}
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{3 n} & a_{n}=\frac{1}{3 n} \\
& \quad \lim _{n \rightarrow \infty} \frac{1}{3 n}=0 \\
& \quad a_{n}^{\prime} \text { 's decrasing }
\end{aligned}
$$

