Math 2300 Spring 2018, Exam 2 $_{\rm March\ 12,\ 2018}$

PRINT YOUR NAME: _____

PRINT INSTRUCTOR'S NAME: _____

Mark your section/instructor:

	Section 001	Kevin Manley	8:00 - 8:50	
	Section 002	Brendt Gerics	8:00 - 8:50	
	Section 003	Faan Tone Liu	9:00 - 9:50	
	Section 004	Shen Lu	9:00 - 9:50	
	Section 005	Faan Tone Liu	10:00 - 10:50	
	Section 006	Kevin Manley	10:00 - 10:50	Q
	Section 007	Noah Williams	10:00 - 10:50	
	Section 008	Ilia Mishev	11:00 - 11:50	
	Section 009	Lee Roberson	11:00 - 11:50	
	Section 010	Pedro Berrizbeita	12:00 - 12:50	
	Section 011	Trubee Davison	12:00 - 12:50	
	Section 012	Lee Roberson	1:00 - 1:50	
	Section 013	Pedro Berrizbeita	1:00 - 1:50	
	Section 014	Matthew Pierson	2:00 - 2:50	
	Section 015	Isabel Corona	2:00 - 2:50	
	Section 016	Robert Hines	3:00 - 3:50	
	Section 017	Ruofan Li	3:00 - 3:50	
	Section 018	Trevor Jack	4:00 - 4:50	
	Section 019	Ilia Mishev	4:00 - 4:50	
	Section 020	Jun Hong	4:00 - 4:50	
	Section $430R$	Patrick Newberry	10:00 - 10:50	
	Section 800	Trubee Davison	9:00 - 9:50	
	Section $888R$	Ilia Mishev	2:00 - 2:50	

Question	Points	Score
1	9	
2	8	
3	12	
4	8	
5	14	
6	12	
7	6	
8	4	
9	10	
10	7	
11	10	
Total:	100	

• No calculators or cell phones or other electronic devices allowed at any time.

- Show all your reasoning and work for full credit. Use full mathematical or English sentences.
- You have 90 minutes and the exam is 100 points.
- You do not need to simplify numerical expressions. For example leave fractions like 100/7 or expressions like $\ln(3)/2$ as is.
- When done, give your exam to your instructor, who will mark your name off on a photo roster.
- We hope you show us your best work!

1. (9 points) Consider the region bounded by y = 0, x = -1, x = 2 and $y = x^2$. This region has been given below, and is assumed to have constant density, ρ .

(i) Find the x-coordinate of the center of mass, denoted by \bar{x} , for this region. You may use the fact that the area of this region is 3.

$$\frac{1}{x^{2}} = \frac{1}{A} \int_{x^{2}} x f(x) dx = \frac{1}{3} \int_{x^{2}} x (x^{2}) dx \\
= \frac{1}{3} \left(\frac{x^{4}}{4} \right)_{-1}^{2} = \frac{5}{4}$$

(ii) **CIRCLE ONE.** Choose the interval which contains the *y*-coordinate of center of mass, denoted by \bar{y} , for this region.

2. (8 points) Let R be the region bounded by $y = x^2$, y = 4, and x = 0. Rotate R around the y-axis to produce the paraboloid tank pictured below, which has a radius of 2 m and a height of 4 m. The tank is filled to a depth of 3 m with fluid of density $\rho \frac{kg}{m^3}$. Assume gravitational acceleration is $g \frac{m}{s^2}$. Set up, but do NOT evaluate, the integral that represents the work required to pump all the fluid out of the tank.

3. (12 points) MULTIPLE CHOICE: For each sequence below, circle the correct answer. Note that these are **SEQUENCES**. They are **NOT** series.

(ii)
$$a_n = \frac{1}{\ln(n)}$$

(A) Sequence converges to 0.

(B) Seque<u>nce c</u>onverges, but not to 0.

(C) Sequence diverges to ∞ (D) Sequence diverges, but not to ∞ .

(iii)
$$a_n = \frac{\sqrt{n^2 + 1}}{3n - 1}$$

(A) Sequence converges to 0.
(B) Sequence converges, but not to 0.
(C) Sequence diverges to ∞

(D) Sequence diverges, but not to ∞ .

(iv)
$$a_n = \frac{(-1)^n n^2}{n^2 + 1}$$

(A) Sequence converges to 0.
(B) Sequence converges, but not to 0.

(C) Sequence diverges to ∞

(D) Sequence diverges, but not to ∞ .

- 4. (8 points) The following statements are both **FALSE**. Justify why each statement is false by providing an explanation. <u>This explanation must include a specific example of a sequence or series.</u>
 - (i) If $\{a_n\}_{n=1}^{\infty}$ is a decreasing sequence, then it is convergent.

(ii) If the sequence $\{a_n\}_{n=1}^{\infty}$ converges to zero, then the series $\sum_{n=1}^{\infty} a_n$ converges.

5. (14 points) Fill in the blanks to make the following sentences true:

(i) The series
$$\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^3 + n + 1}}$$
 is _____ (divergent/convergent),

by the Limit Comparison Test with $b_n =$ _____.

(ii) The series
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$$
 is _____ (divergent/convergent),

by the Direct Comparison Test with $b_n =$ _____.

(iii) The series
$$\sum_{n=1}^{\infty} \frac{n}{n^3}$$
 is ______ (divergent/convergent),
because it is a ______ (geometric series/p-series),
with (circle one)
(A) $p \leq 1$
(B) $p > 1$
(C) $|r| < 1$
(D) $|r| \geq 1$

- 6. (12 points) MULTIPLE CHOICE: Fill in the blank and circle ONE series test to make the sentence true:
 - (i) The series $\sum_{n=1}^{\infty} \frac{3^n \cdot n}{n!}$ is _____ (divergent/convergent) by the
 - (A) Ratio Test
 - (B) Limit Comparison Test
 - (C) Test for Divergence
 - (D) Integral Test

(ii) The series
$$\sum_{n=2}^{\infty} (-1)^n \cos\left(\frac{\pi}{n}\right)$$
 is _____ (divergent/convergent) by the

- (A) Ratio test
- (B) Alternating Series Test
- (C) Direct Comparison Test
- (D) Test for Divergence

(iii) The series
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln(n))^3}$$
 is _____ (divergent/convergent) by the

- (A) Alternating Series Test
- (B) Direct Comparison Test
- (C) Test for Divergence
- (D) Integral Test

- (6 points) MULTIPLE CHOICE: Determine if the following series converge, or diverge. If they converge, determine what they converge to.
 - (i) $\sum_{n=1}^{\infty} (\arctan(n+1) \arctan(n))$
 - (A) The series converges to 0.
 - (B) The series converges to $\frac{\pi}{4}$.
 - (C) The series converges to $\frac{\pi}{2}$.
 - (D) The series converges to π .
 - (E) The series diverges.

(ii)
$$\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{2^{n-1}}$$

(A) The series converges to 0.
(B) The series converges to -2.
(C) The series converges to $\frac{2}{5}$.
(D) The series converges to $-\frac{3}{5}$.
(E) The series diverges.

8. (4 points) Suppose the series $\sum_{n=1}^{\infty} a_n$ has partial sums $s_N = 7 + \frac{2}{\sqrt{N}}$. What does the series $\sum_{n=1}^{\infty} a_n$ converge to?

9. (10 points) Determine whether the following series converges or diverges.

$$\sum_{n=1}^{\infty} \frac{5n^2 - 2n}{7n^3 + 4}$$

(You MUST verify the hypotheses of any test you use.)

10. (7 points) Use the following series to answer the problems below.

$$5 - \frac{5}{3} + \frac{5}{9} - \frac{5}{27} + \frac{5}{81} + \cdots$$

(a) Rewrite the series using sigma notation.

(b) Determine whether the series converges or diverges. <u>If the series converges, find its</u> sum. (You MUST verify the hypotheses of any test you use.)

- 11. (10 points) Consider the alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt[3]{n}}$.
 - (a) Show that this alternating series converges.

(b) Determine whether this series converges absolutely or conditionally.

(c) Use the Alternating Series Estimation Theorem to determine how large n must be, so that the estimation error $|R_n|$ is less than or equal to $\frac{1}{1000}$.