Math 2300, Midterm 1 September 25, 2017

PRINT YOUR NAME: _____

PRINT INSTRUCTOR'S NAME: _____

Mark your section/instructor:

Section 001	Brendt Gerics	8:00 - 8:50
Section 002	Tyler Schrock	8:00 - 8:50
Section 003	Xingzhou Yang	9:00 - 9:50
Section 004	Al Bronstein	9:00 - 9:50
Section 006	Sebastian Bozlee	10:00-10:50
Section 007	Athena Sparks	11:00-11:50
Section 008	Trevor Jack	4:00-4:50
Section 009	Jun Hong	12:00-12:50
Section 011	Isabel Corona	1:00-1:50
Section 012	Hanson Smith	2:00-2:50
Section 013	Noah Williams	3:00 - 3:50
Section 014	John Willis	3:00 - 3:50
Section 015	Robert Hines	4:00-4:50
Section 016	Sarah Salmon	4:00-4:50
Section 017	Xingzhou Yang	8:00 - 8:50
Section 880	Trubee Davison	9:00-9:50

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	6	
6	6	
7	10	
8	10	
9	14	
10	8	
11	6	
Total:	100	

- No calculators or cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit, except where otherwise indicated. Use full mathematical or English sentences.
- You have 90 minutes and the exam is 100 points.
- You do not need to simplify numerical expressions unless otherwise stated. For example leave fractions like 100/7 or expressions like $\ln(3)/2$ as is.
- When done, give your exam to your instructor, who will mark your name off on a photo roster.
- We hope you show us your best work!

$$\int x e^{-x} \, dx$$

$$\int e^x \cos(x) \, dx$$

$$\int \left(\tan(x)\right)^4 \cdot \left(\sec(x)\right)^4 \, dx$$

$$\int \frac{16}{(x^2 - 4)(x - 2)} \, dx$$

5. (6 points) Which of the following integrals arises when one makes a suitable trigonometric substitution to compute? Circle your answer.

$$\int \frac{x^2}{\sqrt{4-x^2}} dx$$
A) $\int 4 (\sin(\theta))^2 d\theta$ B) $\int \frac{2 (\sin(\theta))^2}{\cos(\theta)} d\theta$ C) $\int \frac{(\tan(\theta))^2 \cdot \sec(\theta)}{4} d\theta$
D) $\int \frac{(\tan(\theta))^2}{4 \sec(\theta)} d\theta$ E) $\int \frac{2 (\cos(\theta))^2}{\sin(\theta)} d\theta$ F) $\int -4 (\cos(\theta))^2 d\theta$

- 6. (6 points) Find the average value of $f(x) = 3x^2 + 2x + 1$ on the interval [-1,3]. Circle the correct answer.
 - A) 8 B) 10 C) $\frac{21}{2}$ D) 20 E) 40

7. (10 points) For the following improper integral, determine whether it is convergent or divergent. If the integral is convergent, compute its precise value.

$$\int_3^5 \frac{1}{\sqrt{5-x}} \, dx$$

8. (10 points) For the following improper integral, determine whether it is convergent or divergent. If the integral is convergent, you do NOT have to compute its precise value.

$$\int_{1}^{\infty} \frac{2 + \ln(t+1)}{t} dt$$

- 9. Consider the region A bounded by $y = (x-1)(x-3)^2$ and the x-axis between x = 1 and x = 3.
 - (a) (7 points) Set up an integral which uses the cylindrical shell method to compute the volume of the solid obtained by rotating A about the y-axis. Do NOT evaluate the integral.

(b) (7 points) Set up an integral which uses the **disk/washer method** to compute the volume of the solid obtained by rotating A about the line y = -1. Do NOT evaluate the integral.

10. (8 points) Let R be a solid with base enclosed by the parabola $y = 1 - x^2$ and the *x*-axis. Set up an integral to find the volume of R if the cross-sections perpendicular to the **y-axis** are **squares**. Do NOT evaluate the integral.

- 11. (6 points) Circle the integral which represents the arc length of the function given by the equation $f(x) = \frac{1}{2}x^2$ from x = 0 to x = 1
 - A) $\int_{0}^{1} \sqrt{1+x} \, dx$ B) $\frac{1}{2} \int_{0}^{1} \sqrt{1+x} \, dx$ C) $\int_{0}^{1} \sqrt{1+x^{2}} \, dx$ D) $\frac{1}{2} \int_{0}^{1} \sqrt{1+x^{2}} \, dx$ E) $\int_{0}^{1} \sqrt{1+2x+x^{2}} \, dx$ F) $\frac{1}{2} \int_{0}^{1} \sqrt{1+2x+x^{2}} \, dx$ G) $\int_{0}^{1} \sqrt{1+\frac{x^{4}}{4}} \, dx$ H) $\frac{1}{2} \int_{0}^{1} \sqrt{1+\frac{x^{4}}{4}} \, dx$