Math 2300, Midterm 3 April 17, 2017

PRINT YOUR NAME: _____

PRINT INSTRUCTOR'S NAME: _____

Section 001	Sarah Salmon	8:00 - 8:50
Section 002	Shawn Burkett	9:00 - 9:50
Section 003	Katharine Adamyk	10:00 - 10:50
Section 004	Al Bronstein	11:00 - 11:50
Section 005	Cherry Ng	11:00 - 11:50
Section 006	Saeed Khalili	12:00 - 12:50
Section 007	Al Bronstein	1:00 - 1:50
Section 008	Mason Pelfrey	1:00 - 1:50
Section 009	Trubee Davison	2:00 - 2:50
Section 010	Ilia Mishev	3:00 - 3:50
Section 011	Mark Pullins	4:00 - 4:50
Section 012	John Willis	10:00 - 10:50
Section 013	Ilia Mishev	12:00 - 12:50
Section 014	Hanson Smith	2:00 - 2:50
Section 015	Kevin Manley	3:00 - 3:50
Section 016	Kevin Manley	10:00 - 10:50
Section 018	Sebastian Bozlee	8:00 - 8:50
Section 019	Joseph Timmer	4:00 - 4:50
Section 800	Trubee Davison	9:00 - 9:50
Section 430R	Patrick Newberry	10:00 - 10:50
Section $888R$	Ilia Mishev	2:00 - 2:50

Question	Points	Score
1	12	
2	6	
3	8	
4	7	
5	7	
6	12	
7	9	
8	11	
9	12	
10	6	
11	10	
Total:	100	

- No calculators or cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit, except where otherwise indicated. Use full mathematical or English sentences.
- You have 90 minutes and the exam is 100 points.
- You do not need to simplify numerical expressions unless otherwise stated. For example leave fractions like 100/8 or expressions like $\ln(4)/2$ as is.
- When done, give your exam to your instructor, who will mark your name off on a photo roster.
- We hope you show us your best work!

1. (12 points) Find the interval of convergence for the following power series

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{3^n \sqrt{n+1}} (x-1)^n$$

2. Circle the power series representation for the following functions f(x), centered at 0.

(a) (3 points) $f(x) = xe^x$

(A)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 (B) $\sum_{n=0}^{\infty} \frac{(-1)^{n-1} x^n}{n!}$

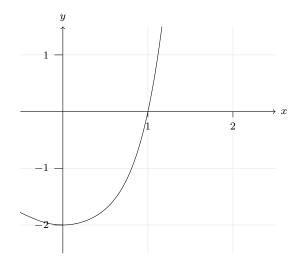
(C)
$$\sum_{n=0}^{\infty} \frac{x^{n+1}}{n!}$$
 (D) $\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!}$

(b) (3 points)
$$f(x) = \frac{1}{1+x^2}$$

(A) $\sum_{n=0}^{\infty} (-1)^{2n} x^{2n}$ (B) $\sum_{n=0}^{\infty} (-1)^n x^{2n}$
(C) $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$ (D) $\sum_{n=0}^{\infty} (-1)^{2n} x^n$

3. (8 points) Find the sum of the series

$$\sum_{n=1}^{\infty} n \left(\frac{1}{3}\right)^{n-1}$$


- 4. Let $f(x) = \sin(2x)$.
 - (a) (4 points) Write the Taylor series of $f(x) = \sin(2x)$ centered at 0 using sigma notation.

(b) (3 points) What is $f^{(45)}(0)$ (the 45th derivative of f at 0)?

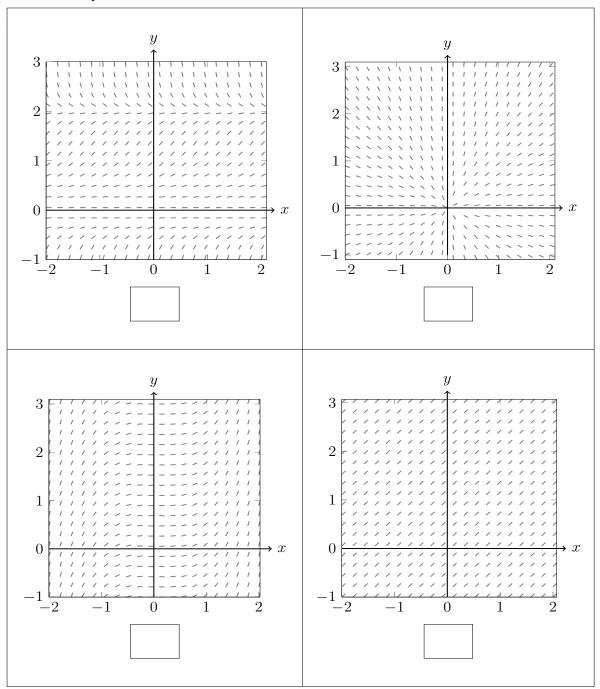
5. (7 points) Find the coefficient of x^3 in the Taylor series of $f(x) = \frac{x}{9+x}$ centered at 0.

- 6. Suppose the power series $\sum b_n (x-2)^n$ converges when x = -4 and diverges when x = 10.
 - (a) (2 points) The series $\sum b_n$
 - (A) Converges (B) Diverges
 - (C) Cannot determine convergence or divergence
 - (b) (2 points) At x = -8, the power series $\sum b_n (x-2)^n$ (A) Converges (B) Diverges
 - (C) Cannot determine convergence or divergence
 - (c) (2 points) At x = 8, the power series $\sum b_n (x-2)^n$ (A) Converges (B) Diverges
 - (C) Cannot determine convergence or divergence
 - (d) (3 points) What is the **largest** possible radius of convergence of the power series $\sum b_n (x-2)^n$?
 - (A) 1 (B) 2 (C) 6
 - (D) 8 (E) 10 (F) 14
 - (e) (3 points) What is the **smallest** possible radius of convergence of the power series $\sum b_n (x-2)^n$?
 - (A) 0 (B) 1 (C) 2
 - (D) 4 (E) 6 (F) 8

7. Let $T_3(x) = a + bx + cx^2 + dx^3$ be the 3rd degree Taylor polynomial for f(x) centered at 0. If the curve below is f(x), then answer the following questions:

(a) (3 points) What is the value for a? Explain your answer.

(b) (3 points) What is the value for b? Explain your answer.


(c) (3 points) What is a possible value for c? Explain your answer.

8. Let $f(x) = \sin(x)$.

(a) (2 points) Find an upper bound M for $|f^{(n+1)}(x)|$ on $[0, \frac{1}{2}]$.

(b) (7 points) Let $T_n(x)$ denote the n^{th} degree Taylor polynomial for f centered at 0 and let $R_n(x) = f(x) - T_n(x)$. Use Taylor's inequality to find an upper bound for $|R_n(\frac{1}{2})|$.

(c) (2 points) Does your answer to (b) allow you to determine whether or not f(x) agrees with its Taylor series at $x = \frac{1}{2}$? Why or why not?

9. (12 points) For each of the following slope fields, give the letter of its corresponding differential equation.

(A) y' = 1 (B) y' = x (C) $y' = x^2$

(D) y' = y/x (E) $y' = y^2(2-y)$

10. Circle the solution to the following differential equations or initial value problems.

(a) (3 points)
$$y' = 5y$$
, $y(0) = -2$

(A)
$$y = 5e^{2x}$$
 (B) $y = 5e^{-2x}$ (C) $y = -5e^{2x}$

(D)
$$y = 2e^{5x}$$
 (E) $y = 2e^{-5x}$ (F) $y = -2e^{5x}$

(b) (3 points)
$$y' = -\frac{x^3}{y^5}$$

(A) $y^6/6 = C - x^4/4$ (B) $y^5/5 = C - x^3/3$ (C) $y^4/4 = C - x^4/4$
(D) $y^6 = \frac{1}{C - x^2}$ (E) $y^5 = \frac{1}{C - x^3}$ (F) $y^4 = \frac{1}{C - x^4}$

11. (a) (8 points) Solve the following initial value problem for y

$$y' = \frac{3x^2 + 4x - 4}{2y}, \qquad y(1) = -2.$$

(b) (2 points) Find y(2).