1. What is the Maclaurin series of $f(x) = \frac{2}{(1+x)^3}$?

A)
$$\sum_{n=0}^{+\infty} (-1)^n \frac{(n+1)(n+2)}{2} x^n$$

B)
$$\sum_{n=0}^{+\infty} (-1)^n (n+1)(n+2) x^n \checkmark$$

C)
$$\sum_{n=0}^{+\infty} (-1)^{n-1} \frac{(n+1)(n+2)}{2} x^n$$

D)
$$\sum_{n=0}^{+\infty} (-1)^n (n+1)(n+2) x^n$$

E)
$$\sum_{n=0}^{+\infty} \frac{(n+1)(n+2)}{2} x^n$$

- 2. If the Maclaurin series of a fuction f(x) is $\sum_{n=1}^{+\infty} (-1)^n \frac{x^n}{3n(n+6)}$ then $f^{(6)}(0)$ is equal to
- A) $\frac{5}{3}$ B) $\frac{5}{2}$ C) $\frac{10}{3}$ \checkmark D) $\frac{9}{7}$ E) $\frac{8}{5}$

- 3. Find the interval of convergence of $\sum_{n=1}^{+\infty} \frac{(-1)^n 3^n}{n \sqrt{n}} \, x^n$
 - A) [0, 1/3]
 - B) (-1/3, 1/3)
 - C) [-1/3, 1/3)
 - D) (-1/3, 1/3]
 - E) [-1/3, 1/3] \checkmark

- 4. Calculate the first non-zero term of the Maclaurin series of $f(x) = \ln(\sec x)$
 - A) $\frac{x^2}{2} \checkmark$ B) $-\frac{x^2}{2}$ C) x^2 D) $-x^2$ E)

5. Knowing that the Maclaurin series of ln(1+x) is given by

$$\ln(1+x) = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{x^n}{n}$$

find the smallest number of terms of the series that one needs to add to compute $\ln(1.1)$ with an error less than or equal to 10^{-8} .

- A) 8
- B) 3
- **C**) 5
- D) 9
- E) 7 ✓

- 6. The Maclaurin series for $f(x) = \frac{x}{(1+x^2)^2}$ is:
 - $\mathsf{A)}\,\sum_{n=1}^\infty (-1)^n x^{2n}$
 - B) $\sum_{n=1}^{\infty} (-1)^n 2nx^{2n-1}$
 - C) $\sum_{n=1}^{\infty} (-1)^n nx^{2n-1}$
 - D) $\sum_{n=1}^{\infty} (-1)^{n+1} nx^{2n-1} \checkmark$
 - E) $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$

7. Find the first three terms of the Taylor series for $f(x) = \cos x$ about $a = \frac{\pi}{3}$,

A)
$$rac{1}{2}-rac{\sqrt{3}}{2}\left(x-rac{\pi}{3}
ight)-rac{1}{4}\left(x-rac{\pi}{3}
ight)^2$$
 \checkmark

B)
$$\frac{1}{2} + \frac{\sqrt{3}}{2} \left(x - \frac{\pi}{3} \right) + \frac{1}{4} \left(x - \frac{\pi}{3} \right)^2$$

C)
$$\frac{1}{2} - \frac{\sqrt{3}}{2} \left(x - \frac{\pi}{3} \right) - \frac{1}{2} \left(x - \frac{\pi}{3} \right)^2$$

D)
$$rac{1}{2} + rac{\sqrt{3}}{2} \left(x - rac{\pi}{3}
ight) - rac{1}{4} \left(x - rac{\pi}{3}
ight)^2$$

E)
$$\frac{1}{2} - \frac{\sqrt{3}}{2} \left(x - \frac{\pi}{3} \right) + \frac{1}{2} \left(x - \frac{\pi}{3} \right)^2$$

- 8. Use the first two non-zero terms of the Maclaurin series of $\ln(\cos x)$ to estimate $\int_0^1 \ln(\cos x) \, dx$

- A) $\frac{1}{5}$ B) $-\frac{1}{5}$ C) $\frac{1}{6}$ D) $\frac{11}{60}$ E) $-\frac{11}{60}$

- 9. If we compute the sum of the fewest terms necessary to guarantee that the error is less than 0.05, using Estimation Theorem for Alternating Series, then what is the estimate for e^{-1} ?

- A) $\frac{11}{8}$ B) $\frac{3}{8}$ C) $\frac{3}{7}$ D) $\frac{2}{5}$ E) $\frac{1}{3}$

10. Suppose that the series $\sum_{n=1}^{+\infty} c_n (x-3)^n$ converges when x=1 and diverges when x=7.

From the above information, which of the following statements can we conclude to be true?

- I. The radius of convergence is $R \geq 2$.
- II. The power series converges at x = 4.5
- III. The power series diverges at x = 6.5
- A) I and II only ✓
- B) I and III only
- C) II and III only
- D) All of them
- E) None of them

- 11. Find the coefficient of x^6 in the power series expansion of $\frac{2}{1+2x^2}$
 - A) 8
- B) -8
- C) 32
- D) $-16 \ \checkmark$ E) -64

12. The power series representation (centered at a=0) and the interval of convergence for $f(x) = \ln(4 - x^2)$ are:

A)
$$-\sum_{n=0}^{+\infty} \frac{x^{2n+2}}{(2n+2)4^{n+1}}$$
 $I=(-2,2)$

B)
$$-2\sum_{n=0}^{+\infty} \frac{x^{2n+2}}{(2n+2)4^{n+1}}$$
 $I=(-2,2)$

C)
$$-2\sum_{n=0}^{+\infty}rac{x^{2n+2}}{(2n+2)4^{n+1}}+\ln 4 \quad I=(-2,2) \ \checkmark$$

D)
$$-2\sum_{n=0}^{+\infty}rac{x^{2n+2}}{(2n+2)4^{n+1}}+\ln 4$$
 $I=[-2,2)$

E)
$$-rac{1}{2}\sum_{n=0}^{+\infty}rac{x^{2n+2}}{(2n+2)4^{n+1}}+\ln 4$$
 $I=(-2,2)$

13. Using Maclaurin series and EstimationTheorem for alternating series, we can obtain the approximation

$$\int_0^{0.1} \frac{1}{1+x^2} \, dx \approx 0.1 - \frac{(0.1)^3}{3} \text{ with error } \leq c$$

The value of c is

- A) $(0.1)^3$ B) $(0.1)^5$ C) $(0.1)^7$ D) $\frac{(0.1)^3}{3!}$ E) $\frac{(0.1)^5}{5}$

- 14. Find the coefficient of x^5 in the power series expansion of $\frac{x^2+1}{x-2}$

- A) $-\frac{1}{64}$ B) $\frac{3}{64}$ C) $-\frac{3}{64}$ D) $\frac{5}{64}$ E) $-\frac{5}{64}$ \checkmark

15. Find the interval of convergence for the Taylor series $\sum_{n=0}^{+\infty} \frac{3^n}{n^n} (x-5)^n$

$$\mathsf{A)}\left(-\frac{1}{3},\frac{1}{3}\right)\quad \mathsf{B)}\left(\frac{14}{3},\frac{16}{3}\right)\quad \mathsf{C)}\left(\frac{15-e}{3},\frac{15+e}{3}\right)\quad \mathsf{D)}\left(\frac{15-e}{3},\frac{15+e}{3}\right)\quad \mathsf{E)}\left(-\infty,\infty\right)\,\checkmark$$

- 16. Which of the following is the interval of convergence of the power series $\sum_{n=1}^{+\infty} (-1)^n \frac{n^2(x-2)^n}{3^n(n^3+2)}$
- A) (0,6) B) [0,6) C) (-1,5] \checkmark D) [-1,5) E) [-1,5]

17. Let f(x) be the function which is represented by the power series

$$f(x) = \sum_{n=1}^{+\infty} (-1)^n \frac{(x-1)^n}{n^3}$$

The fifth derivative of f at x=1 is

- A) $\frac{1}{2}$ B) $-\frac{37}{81}$ C) $-\frac{24}{25}$ \checkmark D) $\frac{25}{96}$ E) $\frac{1}{4}$

- 18. Find the coefficient of x^4 of the Maclaurin series of $f(x) = \sqrt{1+x}$
- A) $\frac{1}{57}$ B) $-\frac{75}{128}$ C) $-\frac{5}{128}$ \checkmark D) $\frac{8}{57}$ E) $\frac{9}{77}$

19. Find the Taylor series of $f(x)=\dfrac{1}{5-x}$ centered at a=1

$$\mathsf{A)} \sum_{n=0}^{+\infty} \frac{(x-1)^n}{5^n}$$

B)
$$\sum_{n=0}^{+\infty} \frac{(x-1)^n}{5^{n+1}}$$

C)
$$\sum_{n=0}^{+\infty} \frac{(x-1)^n}{5^n n!}$$

$$\mathsf{D)} \, \sum_{n=0}^{+\infty} \frac{(x-1)^n}{4^{n+1}} \, \checkmark$$

E)
$$\sum_{n=0}^{+\infty} \frac{(x-1)^n}{4^n}$$

20. Find the Maclaurin series of $\int x^2 \sin x \, dx$

A)
$$\sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+3}}{(2n+3)!}$$

B)
$$\sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+3}}{(2n+1)!}$$

C)
$$\sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+3}}{(2n+3)(2n+1)!}$$

D)
$$\sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+4}}{(2n+4)(2n+1)!} \checkmark$$

E)
$$\sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+4}}{(2n+4)!(2n+1)!}$$

21. Find the Maclaurin series of $f(x)=\dfrac{1}{(1-x)^4}$

A)
$$\sum_{n=3}^{+\infty} (-1)^n \frac{n(n-1)(n-2)}{6} x^{n-3}$$

$$\mathsf{B)} \, \sum_{n=3}^{+\infty} \frac{n(n-1)(n-2)}{6} \, x^{n-3} \, \checkmark$$

C)
$$\sum_{n=2}^{+\infty} (-1)^n n(n-1)x^{n-2}$$

D)
$$\sum_{n=2}^{+\infty} \frac{x^{n-2}}{n(n-1)}$$

$$\mathsf{E)} \sum_{n=2}^{+\infty} \frac{x^{n-2}}{2n(n-1)}$$

- 22. Use a Taylor polynomial to approximate $\int_0^1 e^{-x^3} dx$ with error less than 0.01. The smallest number of terms that are needed for this accuracy is
 - A) 2
- B) 3 √
- C) 4
- D) 5
- E) 6

- 23. Determine the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+3)(2n+1)}$

 - A) $\frac{\pi}{2}$ B) $\frac{\pi-2}{4}$ C) $\frac{\pi-1}{4}$ D) $\frac{\pi-4}{4}$ E) $\frac{\pi}{6}$

- 24. The first 4 nonzero terms in the Maclaurin series of $f(x)=(4+x)^{3/2}$ are:
 - A) $8+3x-\frac{3x^2}{8}+\frac{x^3}{16}$
 - B) $8 + 3x + \frac{3x^2}{16} \frac{x^3}{128} \checkmark$
 - C) $1 + \frac{3x}{2} + \frac{3x^2}{4} \frac{3x^3}{8}$
 - D) $1 + \frac{3x}{2} + \frac{3x^2}{8} \frac{x^3}{8}$
 - E) $1 + \frac{3x}{2} \frac{3x^2}{16} + \frac{x^3}{64}$

25. Suppose that the power series

$$\sum_{n=0}^{\infty} c_n (x-5)^n$$

converges when x=2 and diverges when x=10.

From the above information, which of the following statements can we conclude to be true?

- I: The radius of convergence R satisfies $3 \leq R \leq 5.$
- II: We can NOT determine the interval of convergence from the above information only.
- III: The derivative of the power series is $\sum_{n=1}^{\infty} nc_n(x-5)^{n-1}$, which converges when x=3.
- A) I and II only
- B) I and III only
- C) II and III only
- D) All of them \checkmark
- E) None of them