Math 2300, Midterm 3
 November 16, 2015

PRINT Your NAME: \qquad

PRINT INSTRUCTOR'S NAME: \qquad

Mark your section/instructor:

\square	Section 001	Albert Bronstein	9:00-9:50
\square	Section 002	Andrew Healy	10:00-10:50
\square	Section 003	Joshua Frinak	11:00-11:50
\square	Section 004	Kevin Berg	12:00-12:50
\square	Section 005	Jeffrey Shriner	$2: 00-2: 50$
\square	Section 006	Megan Ly	$3: 00-3: 50$
\square	Section 007	Albert Bronstein	$8: 00-8: 50$
\square	Section 008	Jonathan Lamar	$1: 00-1: 50$
\square	Section 009	Keli Parker	$3: 00-3: 50$
\square	Section 010	Steven Weinell	$4: 00-4: 50$
\square	Section 011	Benjamin Cooper	$8: 00-8: 50$
\square	Section 880	Jordan Watts	$8: 00-8: 50$

Question	Points	Score
1	8	
2	12	
3	12	
4	8	
5	12	
6	12	
7	12	
8	8	
9	6	
10	10	
Total:	100	

- No calculators or cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit. Use full mathematical or English sentences.
- You have 90 minutes and the exam is 100 points.
- You do not need to simplify numerical expressions. For example leave fractions like $100 / 7$ or expressions like $\ln (3) / 2$ as is.
- When done, give your exam to your instructor, who will mark your name off on a photo roster.
- We hope you show us your best work!

1. (8 points) Match the following functions with their corresponding Maclaurin series:
(a) $e^{x^{2} / 2}=$ \qquad

$$
\text { I. } \sum_{n=0}^{\infty} x^{2 n}
$$

$$
\text { II. } \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{2 n}(2 n)!}
$$

(b) $\cos \left(\frac{x}{2}\right)=$ \qquad

$$
\text { III. } \sum_{n=1}^{\infty} n x^{n-1}
$$

(c) $\frac{1}{(1-x)^{2}}=$
IV. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+2}}{2 n+1}$

$$
\text { V. } \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+2}}{(2 n+1)!}
$$

(d) $x \arctan (x)=$ \qquad
VI. $\sum_{n=0}^{\infty} \frac{x^{2 n}}{2^{n} n!}$
2. (12 points) (a) Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{(x-5)^{n}}{2^{n} n^{2}}$. Show all work in justifying your answer.
(b) Find the interval of convergence. Show all work in justifying your answer.
3. (12 points) Find the solution of the differential equation

$$
y(x+1)+y^{\prime}=0
$$

that satisfies the initial condition $y(-2)=1$. Show all your work and write the solution on the line given below.

Solution: $y=$
4. (8 points) Given the following power series $\sum_{n=0}^{\infty} a_{n}(x-2)^{n}$ we know that at $x=0$ the series converges and at $x=8$ the series diverges. What do we know about the following values?
(a) At $x=3$ the series $\sum_{n=0}^{\infty} a_{n}(x-2)^{n}$ is:
(i) convergent
(ii) divergent
(iii) We cannot determine its convergence/divergence with the information given.
(b) At $x=-4$ the series $\sum_{n=0}^{\infty} a_{n}(x-2)^{n}$ is:
(i) convergent
(ii) divergent
(iii) We cannot determine its convergence/divergence with the information given.
(c) At $x=9$ the series $\sum_{n=0}^{\infty} a_{n}(x-2)^{n}$ is:
(i) convergent
(ii) divergent
(iii) We cannot determine its convergence/divergence with the information given.
(d) The following series $\sum_{n=0}^{\infty} a_{n}$ is:
(i) convergent
(ii) divergent
(iii) We cannot determine its convergence/divergence with the information given.
5. (12 points) (a) Write the definition for the $n^{\text {th }}$ degree Taylor polynomial of $f(x)$ centered at $x=a$.
(b) Find the second degree Taylor polynomial for $f(x)=\ln (\sec (x))$ centered at $\frac{\pi}{4}$.
6. (12 points) (a) Express the function $f(x)=\ln \left(1+x^{3}\right)$ as a power series centered about $x=0$.
(b) Express the definite integral as an infinite series.

$$
\int_{0}^{1} \ln \left(x^{3}+1\right) d x
$$

7. (12 points) (a) Fill in the boxes to complete the statement of Taylor's Inequality:
\square $\leq M$ on the interval between the center, a, and the point of approximation, x, then the remainder, $R_{n}(x)$, of the $n^{\text {th }}$ degree Taylor polynomial, $T_{n}(x)$, satisfies the inequality:

$$
\left|R_{n}(x)\right| \leq \square
$$

(b) Use Taylor's Inequality to determine the number of terms of the Maclaurin series for e^{x} that should be used to estimate the number e with an error less than 0.6. Clearly justify your choice of M.
8. (8 points) Each of the following slope fields represents one of the following differential equations. Match each slope field to the corresponding differential equation.
(a) $\frac{d y}{d x}=\frac{x y}{2}$
(b) $\frac{d y}{d x}=y-x-2$
(c) $\frac{d y}{d x}=x+2$
(d) $\frac{d y}{d x}=e^{x^{2}}$
(I)

(II)

(III)

(IV)

9. (6 points) Find the sum of the series.

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots
$$

10. (10 points) Assume we approximate the sum of the series

$$
\sum_{n=0}^{\infty} \frac{2}{n^{2}}
$$

by using the first 3 terms. Give an upper bound for the error involved in this approximation by using the Remainder Estimate for the Integral Test.

