MATH 2300 - review problems for Exam 2

- 1. A metal plate of constant density ρ (in gm/cm²) has a shape bounded by the curve $y = \sqrt{x}$, the x-axis, and the line x = 1.
 - (a) Find the mass of the plate. Include units.
 - (b) Find the center of mass of the plate. Include units.
- 2. Write down (but do not evaluate) a definite integral representing the arc length of the function $f(x) = \ln x$ between x = 1 and x = 5.
- 3. If $\int_1^5 f(x) dx = 7$ and $\int_5^4 f(x) dx = 5$, then find the average value of f(x) on [1, 4].
- 4. Find the average value of $f(x) = 3^{-x}$ on the interval [1, 3].
- 5. (Exercise 7 from Section 6.6 in Stewart's Calculus Concepts and Contexts) Suppose that 2J of work is needed to stretch a spring from its natural length of 30 cm to a length of 42 cm.
 - (a) How much work is needed to stretch the spring from 35 cm to 40 cm?
 - (b) How far beyond its natural length will a force of 30 N keep the spring stretched?
- 6. (Exercise 11 from Section 6.6 in Stewart's Calculus Concepts and Contexts) Show how to approximate the required work by a Riemann sum. Then express the work as an integral and evaluate it: a heavy rope, 50 ft long, weighs 0.5 lb/ft and hangs over the edge of a building 120 ft high.
 - (a) How much work is done in pulling the rope to the top of the building?
 - (b) How much work is done in pulling half the rope to the top of the building?
- 7. (Exercise 15 from Section 6.6 in Stewart's Calculus Concepts and Contexts) Show how to approximate the required work by a Riemann sum. Then express the work as an integral and evaluate it: a leaky 10-kg bucket is lifted from the ground to a height of 12m at a constant speed with a rope that weighs 0.8 kg/m. Initially the bucket contains 36 kg of water, but the water leads at a constant rate and finishes draining just as the bucket reaches the 12-m level. How much work is done?
- 8. Complete Exercise 19 from Section 6.6 on pg. 473 in Stewart's Calculus Concepts and Contexts
- 9. Find the limit of all the sequences in the sequence activity: http://math.colorado.edu/math2300/projects/SequencesPractice.pdf
- 10. Does $\{a_n\}$, where $a_n = \frac{1}{n}$, converge? If so, what does it converge to?
- 11. Decide whether each of the following sequences converges. If a series converges, what does it converge to? If not, why not?
 - (a) The sequence whose *n*-th term is $a_n = 1 \frac{1}{n}$.
 - (b) The sequence whose *n*-th term is $b_n = \sqrt{n+1} \sqrt{n}$.
 - (c) The sequence whose *n*-th term is $c_n = \cos(\pi n)$.

(d) The sequence $\{d_n\}$, where $d_1=2$ and

$$d_n = 2d_{n-1}$$
 for $n > 1$.

12. Find the sum of the series. For what values of the variable does the series converge to this sum?

(a)
$$1 + \frac{x}{2} + \frac{x^2}{4} + \frac{x^3}{8} + \cdots$$

(b)
$$y - y^2 + y^3 - y^4 + \cdots$$

(c)
$$4 + z + \frac{z^2}{3} + \frac{z^3}{9} + \cdots$$

13. For each of the following series, determine whether or not they converge. If they converge, determine what they converge to.

(a)
$$\sum_{n=1}^{\infty} 5 \left(\frac{2}{3}\right)^{n-1}$$

(b)
$$\sum_{n=2}^{\infty} 3 \frac{4^{n+1}}{5^{n-4}} .$$

(c)
$$\sum_{n=3}^{\infty} \frac{7(-\pi)^{2n-1}}{e^{3n+1}}$$

(d)
$$\sum_{n=2}^{8} 4(.07)^{n+1}$$

(e)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 3n + 2}$$
.

14. For each of the following series, determine if it converges absolutely, converges conditionally, or diverges. Completely justify your answers, including all details.

(a)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n+5}$$

(b)
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$

(c)
$$\sum_{n=2}^{\infty} \frac{n}{(\ln n)^2}$$

(d)
$$\sum_{n=1}^{\infty} \frac{2n^2(-3)^n}{n!}$$

(e)
$$\sum_{n=1}^{\infty} \left(\frac{4 \cdot 2^n}{(-3)^{n+1}} + \frac{1}{2^n} \right)$$

(f)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n}}{n^3 + 2n}$$

(g)
$$\sum_{n=1}^{\infty} \frac{n+3n^5}{2n^7+3}$$

- (h) $\sum_{n=1}^{\infty} n^{\frac{1}{n}}$
- (i) $\sum_{n=1}^{\infty} \arctan n$
- $(j) \sum_{n=1}^{\infty} \frac{\sin n}{n^2}$
- (k) $\sum_{n=1}^{\infty} \left(\frac{n}{n+1} \right)^n$
- (l) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$
- 15. Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n!}$
 - (a) Confirm using the Alternate Series Test that the series converges.
 - (b) How many terms must be added to estimate the sum to within .0001?
 - (c) Estimate the sum to within .0001.
- 16. How many terms of $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$ should be added to estimate the sum to within .01? No calculators.
- 17. Check whether the following series converge or diverge. In each case, give the answer for convergence, and name the test you would use. If you use a comparison test, name the series $\sum b_n$ you would compare to.
 - (a) $\sum_{n=1}^{\infty} \frac{n}{(n^2+1)}$
 - (b) $\sum_{n=1}^{\infty} \frac{n}{(n^2+1)^2}$
 - (c) $\sum_{n=1}^{\infty} \left(n + \frac{1}{n} \right)^n$
 - (d) $\sum_{n=1}^{\infty} \frac{\sqrt{n^4 + 1}}{5n^2}$
 - (e) $\sum_{n=1}^{\infty} \sin\left(\frac{1}{n^2}\right)$ (hint: consider $\sum_{n=1}^{\infty} \frac{1}{n^2}$)
 - (f) $\sum_{n=1}^{\infty} \frac{2^n}{n!}$
 - (g) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n+3)!}$

(h)
$$\sum_{n=1}^{\infty} \frac{n!}{(n+2)!}$$

(i)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

- 18. Consider the series $\sum_{n=1}^{\infty} \frac{\ln n}{n}$. Are the following statements true or false? Fully justify your answer.
 - (a) The series converges by limit comparison with the series $\sum_{n=1}^{\infty} \frac{1}{n}$.
 - (b) The series converges by the ratio test.
 - (c) The series converges by the integral test.
- 19. Consider the series $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n}$. Are the following statements true or false? Fully justify your answer.
 - (a) The series converges by limit comparison with the series $\sum_{n=1}^{\infty} \frac{1}{n}$.
 - (b) The series converges by the ratio test.
 - (c) The series converges by the integral test.
 - (d) The series converges by the alternating series test.
 - (e) The series converges absolutely.
- 20. Suppose the series $\sum a_n$ is absolutely convergent. Are the following true or false? Explain.
 - (a) $\sum a_n$ is convergent.
 - (b) The sequence a_n is convergent.
 - (c) $\sum (-1)^n a_n$ is convergent.
 - (d) The sequence a_n converges to 1.
 - (e) $\sum a_n$ is conditionally convergent.
 - (f) $\sum \frac{a_n}{n}$ converges.
- 21. Does the following series converge or diverge?

$$\sum_{n=1}^{\infty} \frac{3^n n^2}{n!}$$

You must justify your answer to receive credit.

- 22. A ball is dropped from a height of 10 feet and bounces. Assume that there is no air resistance. Each bounce is $\frac{3}{4}$ of the height of the bounce before.
 - (1) Find an expression for the height to which the ball rises after it hits the floor for the nth time.
 - (2) Find an expression for the total vertical distance the ball has traveled when it hits the floor for the nth time.
 - (3) Using without proof the fact that a ball dropped from a height of h feet reaches the ground in $\sqrt{h}/4$ seconds: Will the ball bounce forever? If not, how long it will take for the ball to come to rest?

Want more practice? Here's some more!

- 23. In theory, drugs that decay exponentially always leave a residue in the body. However in practice, once the drug has been in the body for 5 half-lives, it is regarded as being eliminated. If a patient takes a tablet of the same drug every 5 half-lives forever, what is the upper limit to the amount of drug that can be in the body?
- 24. Let $\{f_n\}$ be the sequence defined recursively by $f_1 = 5$ and $f_n = f_{n-1} + 2n + 4$.
 - (a) Check that the sequence g_n whose n-th term is $g_n = n^2 + 3n + 1$ satisfies this recurrence relation, and that $g_1 = 5$. (This tells us $g_n = f_n$ for all n.)
 - (b) Use the result of part (a) to find f_{20} quickly.
- 25. Find the values of a for which the series converges/diverges:

(a)
$$\sum_{n=1}^{\infty} \left(\frac{1}{2a}\right)^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{a} \left(\frac{1}{2}\right)^n$$

(c)
$$\sum_{n=1}^{\infty} \left(\frac{2}{n}\right)^a$$

(d)
$$\sum_{n=1}^{\infty} (\ln a)^n$$

(e)
$$\sum_{n=1}^{\infty} \frac{1}{n(\ln n)^a}$$

$$(f) \sum_{n=1}^{\infty} (1+a^n)$$

$$(g) \sum_{n=1}^{\infty} (1+a)^n$$

$$(h) \sum_{n=1}^{\infty} n^{\ln a}$$

(i)
$$\sum_{n=1}^{\infty} a^{\ln n}$$

26. Using the table below, estimate the length of the curve given by y = f(x) from (3,4) to (6,0.7).

x	3	3.5	4	4.5	5	5.5	6
f(x)	4	3.6	2.4	-1	-0.5	0	0.7
f'(x)	-0.8	-2.4	-6.8	1	1	1.4	-0.4

27. Determine if these sequences converge absolutely, converge conditionally or diverge.

(a)
$$\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$$

(b)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2 + 1}$$

28. A steady wind blows a kite due east. The kite's height above ground from horizontal position x = 0 to x = 80 feet is given by

$$y = 150 - \frac{1}{40}(x - 50)^2$$

Find the distance traveled by the kite. Just set up the integral - don't evaluate.

For each of the following statements, determine if it is true Always, Sometimes or Never.

- 29. If a sequence a_n converges, then the sequence $(-1)^n a_n$ also converges.
- 30. If a sequence $(-1)^n a_n$ converges to 0, then the sequence a_n also converges to 0.
- 31. The average value of a function is negative.
- 32. The geometric series $\sum_{n=1}^{\infty} 5r^{n-1}$ converges to $\frac{5}{1-r}$
- 33. The geometric series $\sum_{n=1}^{\infty} \frac{c}{5^{n-1}}$ converges to $\frac{5c}{4}$
- 34. If $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} |a_n|$ converges.
- 35. If a series $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n\to\infty} a_n = 0$
- 36. If the series $\sum_{n=1}^{\infty} (-1)^n a_n$ is conditionally convergent, then the sequence a_n converges.
- 37. If the series $\sum_{n=1}^{\infty} (-1)^n a_n$ is convergent, then the series $\sum_{n=1}^{\infty} a_n$ is convergent.
- 38. If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, then $\sum_{n=1}^{\infty} a_n$ converges conditionally.
- 39. If the series $\sum_{n=1}^{\infty} |a_n|$ diverges, then the series $\sum_{n=1}^{\infty} a_n$ diverges.