MATH 2300 - review problems for Sections 7.8-8.4

- 1. (a) Show that $\int_0^\infty e^{-x} dx$ is convergent.
 - (b) Plot the functions $f(x) = e^{-x}$ and $g(x) = e^{-x^2}$ on the same coordinate axes, for $x \ge 0$.
 - (c) Is $\int_0^\infty e^{-x^2} dx$ convergent? (Hint: Use the fact that $x^2 \ge x$ for $x \ge 1$.) Justify your answers carefully.
- 2. Suppose that f is a continuous function, such that $f(x) \leq \frac{1}{x^2}$ for all $x \leq 100$. Does that imply $\int_1^\infty f(x)dx$ converges? Is it possible that $\int_1^\infty f(x)dx$ diverges? Justify your answer carefully.
- 3. Consider the plane region \mathcal{R} enclosed between the curves $y = x^2$ and y = x, cut out of a steel plaque with variable density $\delta(x) = 1 + x$.
 - (a) What is the area of the region?
 - (b) What is the mass of the region?
 - (c) What is the perimeter of the region? (You can leave your answer in simplified integral form.)
- 4. Consider the solid obtained by revolving the region \mathcal{R} in the previous problem about the x-axis.
 - (a) What is the volume of this solid?
 - (b) What is its mass, if the density is constant in each vertical cross-section $\delta(x) = x$?
 - (c) What are the volumes of the solids obtained by revolving the same region about the y-axis and about the horizontal line y = 2, respectively? Which is the largest volume of the three?
- 5. A sphere of radius R = 2 km is placed on the ground and filled with a gas that has density decreasing with the hight as $\delta(h) = 1/h^2 \text{ kg/m}^3$, where h is the height from the ground. How high above the center of the sphere is the center of mass of the sphere, when it is completely filled with gas?
- 6. For the following curves given in polar form $r = f(\theta)$, plot the curve carefully and calculate the arc length and the area enclosed between the specified endpoints (set up the integral, simplify it and evaluate it, when possible):
 - (a) $r = \theta$ for $0 \le \theta = \pi/2$.
 - (b) $r = 1, 0 \le \theta \le \pi/3$
 - (c) $r = 2\cos(\theta), \ 0 \le \theta \le \pi$
- 7. Review word problems in Section 9.2, such as # 27, #30 and #37 in the textbook.