$Midterm \ 2 - Math \ 2300 - November \ 13, \ 2013$

On my honor as a University of Colorado at Boulder student I have neither given nor received unauthorized assistance on this exam.

Name:_____

Please select your section:

() 001	M. GRIMES
002	A. Spina
003	A. Spina(11 Am)
004	C. Mesa
005	F.T. LIU
006	C. Bridges(3 pm)
007	К. Smith(8 ам)
008	S. Henry(2 pm)

In order to receive full credit your answer must be **complete**, **legible** and **correct**. You should show all of your work, and give clear explanations. **Calculators**, **phones or other electronic devices are not allowed**.

Question	Points	Score
1	20	
2	10	
3	10	
4	18	
5	10	
6	12	
7	12	
8	8	
Total:	100	

1. (20 points) Determine if the following series converge absolutely, converge conditionally or diverge. Give complete explanations.

(a)
$$\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$$

2. (10 points) Find the interval of convergence for the following series. Show all of your work and explain your reasoning.

$$\sum_{n=1}^{\infty} (-1)^n \frac{(x-2)^n}{n}$$

3. (10 points) Use a 3^{rd} degree Taylor polynomial to estimate $\ln(1.1)$. Show your work. (Do not simplify your answer.)

4. (18 points) Use any method you like to find Taylor series about a = 0 for the following functions. (a) $f(x) = \sin(x^2)$

(b) $g(x) = xe^x$

(c)
$$k(x) = \frac{1}{(1-x)^2}$$

5. (10 points) The Taylor series for $\arctan(x^2)$ is given by

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{4n+2}.$$

Is it possible to use this Taylor series to approximate $\arctan(4)$? Justify your answer.

6. (12 points) Use the Lagrange Error Bound to find a bound on the error in using a 4th degree Taylor Polynomial for $f(x) = e^x$ about a = 0 to estimate \sqrt{e} .

7. (12 points) For what values of k (if any) does $y = 5 + 3e^{kx}$ satisfy the differential equation $\frac{dy}{dx} = 10 - 2y$?

8. (8 points) For each of the following, circle True or False

(a) True	False	If $\lim_{n \to \infty} a_n = 0$ then $\sum_{n=1}^{\infty} a_n$ must converge.
(b) True	False	If $\sum_{n=1}^{\infty} a_n$ converges absolutely, then $\sum_{n=1}^{\infty} \frac{a_n}{n}$ must converge.
(c) True	False	If $\sum_{n=1}^{\infty} a_n$ converges then $\sum_{n=1}^{\infty} a_n $ must converge.
(d) True	False	If $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = \frac{1}{2}$, then $\lim_{n \to \infty} a_n = 0$.