1. Consider the graph of j'(x) given here. Note that this is not the graph of j(x).

For each of (a)-(f) below, list all x-values labeled on the graph which satisfy the given statement in the blank provided. If the statement is not true at any of the labeled x-values, write "NP". You do not need to show your work. No partial credit will be given on each part of this problem.

- (a) The function j(x) has a local minimum at x =_____.
- (b) The function j(x) has a local maximum at x =
- (c) The function j(x) is concave up at x =_____.
- (d) The function j(x) is concave down at x =_____.
- (a) d The function of (so) that wantier (a) that are

CONTRACTOR OF THE SECOND OF TH

2. (1 point) Determine the equation of the tangent line to $f(x) = e^{\frac{1}{3}x^3 + \frac{3}{2}x^2 - 10x}$ at x = 0.

3. (1 point) If $x^2 + xy + y^3 = 1$, find the value of y' at the point (1,0).

- - -

4. Determine the derivative of the following functions.

(a) (1 point)
$$g(x) = \frac{3^x \cos(x)}{x^3 + 5x + 1}$$

(b) (1 point)
$$h(x) = \sec\left(e^{x^2}\right)$$

(c) (1 point)
$$y = x \sin^{-1} x + \sqrt{1 - x^2}$$

- - --

(d) (1 point)
$$y = \sqrt{\frac{1-x}{1+x}}$$

(e) (1 point)
$$y = 5^x \log_5 x$$

5. (1 point) Use logarithmic differentiation to find the derivative of the function $f(x) = x^{\ln x}$

- . . -

7. Suppose f is a continuous function on $(-\infty, \infty)$. The graph of the *derivative* f' of f is given below.

- (a) (1 point) On what intervals is f increasing or decreasing?
- (b) (1 point) At what values of x does f have a local maximum or minimum?
- (c) (1 point) On what intervals is f concave upward or downward?
- (d) (1 point) If f(0) = 0, sketch a possible graph of the continuous function f(x). Be sure to label all local extrema and any inflection point(s).

- 8. Find the derivatives of each of the following functions. For each part, circle the correct answer.
 - (a) (1 point) $y = x^2 \sin(x) \tan(x)$
 - I) $x^2 \cos(x) \sec^2(x) + 2x \sin(x) \tan(x)$
 - II) $2x\cos(x)\sec^2(x)$
 - III) $2x\sin(x)\tan(x) + x^2\sin(x)\sec^2(x)$
 - IV) $x^2 \sin(x) \sec^2(x) + (2x\sin(x) + x^2\cos(x))\tan(x)$
 - (b) (1 point) $y = \ln(a^3 + x^3)$
 - $I)\frac{3x^2}{a^3+x^3}$
 - II) $3\ln(a+x)\cdot 3x^2$
 - $III) \frac{1}{a^3 + x^3}$
 - IV) $\ln(3x^2)$
 - (c) (1 point) $y = \arctan(\cos \theta)$
 - $I)\frac{1}{1+\cos^2\theta}$
 - II) $\frac{\cos\theta}{1+(-\sin\theta)^2}$
 - $III) \frac{-\sin\theta}{1+\cos^2\theta}$
 - IV) $-\sec^2(\cos\theta)\sin\theta$

(d) (1 point)
$$y = \sqrt{x + \sqrt{x+1}}$$

$$I) \frac{1+\sqrt{x+1}}{2\sqrt{1+\sqrt{x+1}}}$$

$$II) \frac{1 + \frac{1}{2\sqrt{x+1}}}{2\sqrt{x+\sqrt{x+1}}}$$

III)
$$\frac{1}{2}(x+\sqrt{x+1})^{-1/2}\cdot(1+\sqrt{x+1})$$

IV)
$$\frac{1}{2}\sqrt{x+\sqrt{x+1}}\cdot\sqrt{x+1}$$

(e) (1 point)
$$y = 2^{x \cos(x)}$$

I)
$$2^{x\cos x} \cdot \ln(2)$$

II)
$$2^{\cos x} \cdot 2^x \cdot \ln(2) \cdot (-\sin x)$$

III)
$$2^{x \cos x} \cdot \ln(2) \cdot (\cos x - \sin x)$$

IV)
$$2^{\cos x - x \sin x} \cdot \ln(2)$$

- - - -

9. Find the following derivatives using the information given below:

Graph of f(x)

_		-3	-2	-1	0	1	2	3	$\mid 4 \mid$
	g(x)	-10	-4	-2.5	-1	3	5	9	14
	g'(x)	-4	-2	1	5	2	2	3	6

(a) (1 point) h'(0), where h(x) = g(g(x))

(b) (1 point)
$$q'(1)$$
, where $q(x) = \frac{f(x) + g(x)}{2^x}$

(c) (1 point)
$$r'(0)$$
, where $r(x) = \sqrt{\cos(x)g(x)}$

[12 points] In the following table, both f and g are differentiable functions of x. In addition, g(x) is an invertible function. Write your answers in the blanks provided. You do not need to show your work.

x	2	3	4	5
f(x)	7	6	2	9
f'(x)	-2	1	3	2
g(x)	1	4	7	11
g'(x)	1	2	3	2

a. [3 points] If $h(x) = \frac{g(x)}{f(x)}$, find h'(4).

h'(4) =______

b. [3 points] If k(x) = f(x)g(x), find k'(2).

k'(2) =

c. [3 points] If $m(x) = g^{-1}(x)$, find m'(4).

m'(4) =

d. [3 points] If n(x) = f(g(x)), find n'(3).