
Calculus 1: A Large and In Charge
Review – Solutions

I use the symbol ∃ which is shorthand for the phrase “there exists”.

1. We use the formula that Average Rate of Change is given by f(b)−f(a)
b−a

(a) 5−2
2−(−1) = 3

3
= 1

(b) 5−2
25−4 = 3

21
= 1

7

(c) 1/10−1/2
3−(−1) = −4/10

4
= − 1

10

2. (a) lim
x→12

10− 3x = 10− 26 = −26

(b) lim
x→5

4

x− 7
=

4

−2
= −2

(c) lim
x→−3

x2 − x− 12

x+ 3
= lim

x→−3

(x− 4)(x+ 3)

x+ 3
= −7

(d) lim
x→1

x2 + x− 2

x2 − 3x+ 2
= lim

x→1

(x+ 2)(x− 1)

(x− 1)(x− 2)
=

3

−1
= −3

(e) lim
x→1

x3 − 1

x2 − 1
= lim

x→1

(x− 1)(x2 + x+ 1)

(x− 1)(x+ 1)
=

3

2

(f) lim
x→1

√
x− x2

1−
√
x

= lim
x→1

√
x(1− x3/2)
1−
√
x

= lim
x→1

√
x(1−

√
x)(1 +

√
x+ x)

1−
√
x

= 3

(g) lim
x→−4−

|x+ 4|
x+ 4

= lim
x→−4−

−(x+ 4)

x+ 4
= −1

(h) lim
x→1.5

2x2 − 3x

|2x− 3|
= lim

x→1.5

x(2x− 3)

|2x− 3|
does not exist. (One sided limits do not agree).

(i) lim
x→0+

1

x
− 1

|x|
= lim

x→0+

1

x
− 1

x
= 0

3. (a) lim
x→−2

x2 − 2x− 8

x+ 2
= lim

x→−2

(x− 4)(x+ 2)

x+ 2
= lim

x→−2
x − 4 = −6 So set g(x) = x − 4

and g(x) is a continuous extension of f(x).

(b) This is impossible as lim
x→7

x− 7

|x− 7|
does not exist. Indeed since lim

x→7+

x− 7

|x− 7|
=

lim
x→7+

x− 7

x− 7
= 1 and lim

x→7−

x− 7

|x− 7|
= lim

x→7−

x− 7

−(x− 7)
= −1
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(c) lim
x→−4

x3 + 64

x+ 4
= lim

x→−4

(x+ 4)(x2 − 4x+ 16)

x+ 4
= 48 So set g(x) = x2 − 4x + 16 and

g(x) is a continuous extensions of f(x).

4. (a) By the Sandwich Theorem, lim
x→−1

f(x) = 1

(b) By the Sandwich Theorem, lim
x→1

f(x) = 3

(c) Observe −1 ≤ cos
(
1
x

)
≤ 1 ⇒ −x ≤ x cos

(
1
x

)
≤ x for x > 0 and x ≤ x cos

(
1
x

)
≤

−x for x < 0. So by the Sandwich Theorem, each directional limit is 0 and so

lim
x→0

x cos

(
1

x

)
= 0

(d) Note that 1 ≤ 1 + sin2
(
2π
x

)
≤ 2 ⇒

√
x ≤

√
x
(
1 + sin2

(
2π
x

))
≤ 2
√
x as

√
x > 0

for so by the Sandwich Theorem lim
x→0+

√
x

(
1 + sin2

(
2π

x

))
= 0

5. (a) Consider x2 −
√
x+ 1 = f(x). f(x) is continuous on (1, 2) as it is the difference

of continuous functions and so f(1) = 1 −
√

2 < 0 and f(2) = 4 −
√

3 > 0. By
the Intermediate Value Theorem, ∃ c such that f(c) = 0 with 1 < c < 2, i.e.
(c)2 =

√
c+ 1

(b) Again, f(x) = cos x−2x is continuous on (0, π/4) and f(0) = 1 > 0 and f(π/4) <
0 so by the IVT, a solution exists.

6. Use the definition f ′(x) = lim
h→0

f(x+ h)− f(x)

h

(a) lim
h→0

3(x+ h) + 1− (3x+ 1)

h
= lim

h→0

3x+ 3h+ 1− 3x− 1

h
= lim

h→0

3h

h
= 3

(b) lim
h→0

√
x+ h−

√
x

h
= lim

h→0

x+ h− x
h(
√
x+ h+

√
x)

= lim
h→0

1√
x+ h+

√
x

=
1

2
√
x

(c) lim
h→0

(x+ h)3 + (x+ h) + 1− (x3 + x+ 1)

h

= lim
h→0

x3 + 3x2h+ 3xh2 + h3 + x+ h+ 1− x3 − x− 1

h

= lim
h→0

=
h(3x2 + 3xh+ h2 + 1

h
= 3x2 + 1

(d) lim
h→0

1√
x+h
− 1√

x

h
= lim

h→0

√
x−
√
x+ h

h(
√
x
√
x+ h)

= lim
h→0

x− x− h
h(
√
x
√
x+ h)(

√
x+
√
x+ h)

= lim
h→0

−1

h(
√
x
√
x+ h)(

√
x+
√
x+ h)

=
−1

x(2
√
x)

= − 1

2x3/2
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7. f(x) being differentiable at a point means that f ′(x) exists and is continuous at that
point.

(a) f ′(x) = 6x so both f and f ′(x) are continuous and differentiable everywhere.

(b) f(x) is continuous for x ≥ 0 and f ′(x) = 1+ 1
2
√
x

so f(x) is differentiable for x > 0

(c) f(x) is continuous for any x 6= 1 and f ′(x) = −2
(x−1)2 so f(x) is differentiable for

any x 6= 1

(d) f(x) is continuous for x ≥ 2 and f ′(x) is continuous on (0, 2) and (2,∞).

8. (a) f ′(x) = (1)(x−1)−(1)(x+1)
(x−1)2 = x−1−x−1

(x−1)2 = −2
(x−1)2

(b) dy
du

= −2u(1+u2)−2u(1−u2)
(1+u2)

= −2u−2u3−2u+2u3

(1+u2)
= −4u

(1+u2)2

(c) y = x3/2 + 4
√
x+ 3x−1/2 ⇒ y′ = 3

2

√
x+ 2√

x
− 3

2x3/2

(d) y =
√
x−1√
x+1
⇒ y′ =

1
2
√

x
(
√
x+1)− 1

2
√
x
(
√
x−1)

(
√
x+1)2

= 1
2
√
x(
√
x+1)2

(e) y′ = 2ax+ b

(f) g(x) = x+ 22/5 ⇒ g′(x) = 1 + 2
5
x−3/5

(g) u = t2/3 + 2t1/3 ⇒ du
dt

= 2
3
t−1/3 + 2

3
t−2/3

(h) s = t7/2 − t+
√
t⇒ ds

dt
= 7

2
t5/2 − 1 + 1

2
√
t

9. Use that the tangent line at a point x = c is given by y − y0 = f ′(x)(x− c)

(a) y′ = 2(x+1)−2x(1)
(x+1)2

⇒ m = 2
4

= 1
2
.

So the tangent line is y − 1 = 1
2
(x− 1).

(b) y′ =
1

2
√
x
(x+1)−

√
x

(x+1)2
⇒ m =

1
4
(5)−2
25

= −3/4
25

= − 3
100

.

So the tangent line is y − 2
5

= − 3
100

(x− 4).

(c) y′ = 1 + 1
2
√
x
⇒ m = 3

2
.

So the tangent line is y − 2 = 3
2
(x− 1).

10. Using the rules of derivatives, it is quite simple.

(a) (f + g)′(1) = f ′(1) + g′(1) = 2

(b) (2f − g)′(2) = 2f ′(2)− g′(2) = −4

(c) (3fg)′(1) = 2f ′(1)g(1) + 3f(1)g′(1) = 15

(d)
(
f
g

)′
(1) = f ′(1)g(1)−f(1)g′(1)

(g(1))2
= −7

3



(e) (f ◦ g)′(1) = f ′(g(1))g′(1) = f ′(1)g′(1) = −3

(f) (f 2 · g)′(1) = 2f(1)f ′(1)g(1) + (f(1))2g′(1) = 8 (Chain/Product Rule)

(g) (
√
fg)′(2) = 1

2
√
f(2)g(2)

· (fg)′(2) = 1

2
√
f(2)g(2)

(f ′(2)g(2) + f(2)g′(2)) =
√

10

11. Use that d
dt

(s(t)) = v(t), d
dt

(v(t)) = a(t) and speed is the absolute value of velocity.
The answers here are given so at the first number is velocity, speed then acceleration
for t = 1, given as

(
v(1), |v(1)|, a(1)

)
and the same for time t = 4.

(a) v(t) = 3 and a(t) = 0 so ⇒ (3, 3, 0) and (3, 3, 0)

(b) v(t) = 9t2 − 2 and a(t) = 18t so ⇒ (7, 7, 18) and (142, 288, 0)

(c) v(t) = −6t+ 16 and a(t) = −6 so ⇒ (10, 10,−6) and (−8, 8, 0)

(d) v(t) = −2t
(1+t2)2

and a(t) = −2(1+t2)2+2t(2(1+t2)(2t))
(1+t2)4

so ⇒ (−1, 1, 1
2
) and ( −4

289
, 4
289
, 94
4913

)

12. (a) f ′(x) = sin x+ x cosx

(b) dy
dx

= − sinx− 2 sec2 x

(c) g′(t) = 4 sec t tan t+ 2 sec2 t

(d) h′(θ) = 1
2
√
θ

cot θ −
√
θ csc2 θ

(e) dy
dx

= cosx(1+cosx)−sinx(− sinx)
(1+cosx)2

= cosx+cos2 x+sin2 x
(1+cosx)2

= cosx+1
(1+cosx)2

= 1
1+cosx

(f) y′ = sec2(cosx)(− sinx)

(g) y′ = sinx cosx+ x cos2 x− x sin2 x

(h) y′ = − cscx cot2 x− csc3 x

13. This is the same as evaluating the derivative at x = 0.

(a) y′ = 3(x2 − x+ 1)2(2x− 1)⇒ m = −3

(b) y′ = −4(x2 − 2x− 5)−5(2x− 2)⇒ m = −8
3125

(c) y′ = 1
3
(1 + tan t)−2/3 ⇒ m = 1

3

(d) y′ = 3 cos2 x(− sinx)⇒ m = 0

(e) y′ = 2x 3
√
x2 + 2 + (x2 + 1)1

3
(x2 + 2)−2/3(2x)⇒ m = 0

(f) y′ = sec2(cosx)(− sinx)⇒ m = 0

(g) y′ = cos(sin(sinx)) cos(sin(x)) cosx⇒ m = 1

(h) y′ = 1

2
√

cos(sin2 x)
(− sin(sin2 x))2 sinx cosx⇒ m = 0

14. Use the method of implicit differentiation.
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(a) ⇒ 2x− 2x dy
dx

= 0⇒ dy
dx

= x
y

(b) ⇒ 2x− 2y − 2x dy
dx

+ 3y2 dy
dx

= 0⇒ dy
dx

= 2y−2x
3y2−2x

(c) ⇒ 1
2
√
x+y

(
1 + dy

dx

)
+ 1

2
√
xy

(
y+x dy

dx

)
= 0⇒ dy

dx
=
−
√
y

2
√
x
− 1

2
√
x+y√

x
2
√
y
+ 1

2
√
x+y

= −y
√
x
√
x+y+(x+y)

√
x
√
y

x
√
y
√
x+y+(x+y)

√
x
√
y

15. This is a combination of problem 10 and 15.

(a) ⇒ 4(x2+y2)(2x+2y dy
dx

) = 25(2x−2y dy
dx

)⇒ 4(10)(6+2m) = 25(6−2m)⇒ m = −9
13

So the tangent line is y − 1 = −9
13

(x− 3)

(b) ⇒ 2xy2 + 2x2y dy
dx

= 2(y + 1)(4− y2) dy
dx

+ (y + 1)2(−2y) dy
dx
⇒ m = 0

So the tangent line is y = −2

(c) ⇒ 2y dy
dx

= 20x3 − 2x⇒ 4m = 18⇒ m = 9
2

So the tangent line is y − 2 = 9
2
(x− 1)

16. Just use the rules of taking derivatives.

(a) f ′(x) = g(x2) + xg′(x2)(2x) = g(x2) + 2x2g′(x2)
⇒ f ′′(x) = 2xg′(x2) + 4xg′(x2) + 8x3g′′(x2) = 6xg′(x2) + 8x3g′′(x2)

(b) f ′(x) = g′(x)x−g(x)
x2

= g′(x)
x
− g(x)

x2
⇒ f ′′(x) = g′′(x)

x
− 2g′(x)

x2
+ 2g(x)

x3

(c) f ′(x) = g′(
√
x) 1

2
√
x
⇒ f ′′(x) = g′′(x) 1

4x
− g′(x) 1

4x3/2

17. V = x3 so dV
dt

= 3x2 dx
dt

18. dy
dt

= x√
1+x2

dx
dt
⇒ 4 = 2√

5
dx
dt
⇒ dx

dt
= 2
√

5

19. Let s be the distance between the ships so s2 = x2 + y2 where x is the distance from
Ship A to where Ship B was at noon and Y is the same for Ship B. The at the time in
question, s =

√
100 + 10, 000 = 10

√
101. So:

⇒ s
ds

dt
= x

dx

dt
+ y

dy

dt
⇒ 10

√
101

ds

dt
= (10)(−35) + 100(25)⇒ ds

dt
=

215√
101

20. Let r be the radius of the water level inside the cone and h its height. By similar
triangles, we deduce that h = 3r. Note we must use the same units for all measurement
so I converted everything into centimeters. Thus the final answer is in cubic centimeters
per minute. Thus:

V =
1

3
πr2h =

1

27
πh3 ⇒ dV

dt
=

1

9
πh2

dh

dt
⇒ dV

dt
=

1

9
π(200)2(20) =

800, 000π

9

Since this is the overall change in volume, the rate at which water is being pumped
into the tank is 800,000π

9
+ 10, 000 since the rate of change is the rate in minus the rate

out.
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21. Draw a triangle with vertices at (0, 0), (5, 0) and the remaining side in quadrant I with
length 4. Thus the height of the triangle is h = 4 sin θ and base b = 5. Note θ is the
angle between the two fixed sides and the final units are in square meters per second.
Thus:

A =
1

2
bh =

1

2
(5)(4 sin θ) = 10 sin θ ⇒ dA

dt
= 10 cos θ ⇒ dA

dt
= 10 cos(

π

3
) =

3

10

22. Draw a circle with radius 100 with center at (200, 0). Then the friend is at the origin
and the runner is at the point (x, y) on the curve (x− 200)2 + y2 = 1002. Let s be the
distance between the runner and his friend. Thus:

s2 = x2+y2 ⇒ s2 = x2+(1002−(x−200)2)⇒ s2 = 1002−2002+400x⇒ 2s
ds

dt
= 400

dx

dt

At the time in question, this implies that ds
dt

= dx
dt

. To find dx
dt

, we need to use some
trigometry. Form a triangle between the origin, runner and the center of the circle
and let θ be the angle between the x-axis and the edge connecting the runner and the
center of the circle. Thus by the law of cosines,

2002 = 2002 + 1002 − 2(200)(100) cos θ ⇒ cos θ =
1

4
⇒ sin θ =

√
15

4

By the definition of θ and using opposite interior angles, we obtain dx
dt

= v sin θ ⇒ dx
dt

=
7
√
15
4

where v is the runner’s velocity.

23. Use the fact that f(x) ≈ f(a) + f ′(a)(x− a).

(a) Use the function f(x) =
√
x and a = 36. Then f ′(x) = 1

2
√
x
⇒ f ′(36) = 1

12
. Thus√

36.1 ≈ 6 + 1
12

(36.1− 36)⇒
√

36.1 ≈ 721
120

(b) Use the function f(x) = 1
x

and a = 10. Then f ′(x) = −1
x2
⇒ f ′(1) = −1

100
. Thus

1
10.1
≈ 1

10
− 1

100
(10.1− 10)⇒ 1

10.1
≈ 99

1000

(c) Use the function f(x) = x6 and a = 2. Then f ′(x) = 6x5 ⇒ f ′(2) = 192. Thus
(1.97)6 ≈ 64 + 192(1.97− 2)⇒ (1.97)6 ≈ 1456

25

24. We first find all numbers x such that f ′(x) = 0 or f ′(x) is undefined. These are the
critical numbers of the function. In the problem, this is what was meant when it
ask to find “critical values”.

(a) f ′(x) = 10x− 4. Thus the critical number is
{

2
5

}
(b) f ′(t) = 6t2 + 6t− 6. Thus the critical numbers are

{
−1+

√
5

2
, −1−

√
5

2

}
6



(c) s′ = 4t3+12t2+4t = 4t(t2+3t+1). Thus the critical numbers are
{

0, −3+
√
5

2
, −3−

√
5

2

}
(d) f ′(r) = r2+1−r(2r)

(r2+1)
= 1−r2

(1+r2)2
. Thus the critical numbers are {1 ,−1} since x2 + 1 is

never zero.

(e) g′(x) = 1
3
x−2/3 + 2

3
x−5/3 = 1

3
x−5/3(x+ 2). Thus the critical numbers are {0, −2}

(f) g′(x) = 1
3
(x2 − x)−2/3(2x− 1). Thus the critical numbers are

{
0, 1, 1

2

}
25. The absolute max and min of a function will always occur at the endpoints of the

interval I = [a, b] or critical numbers in I.

(a) f ′(x) = 6x − 12. The critical number is 2 and so f(2) = −7, f(0) = 5 and
f(3) = −4. So max

I
{f(x)} = 5 and min

I
{f(x)} = −7.

(b) f ′(x) = 6x2 + 6x. The critical numbers are {0, 1}, f(0) = 4, f(1) = 9, f(−1) = 5
and f(−2) = 8. So max

I
{f(x)} = 9 and min

I
{f(x)} = 4.

(c) f ′(x) = 2x− 2
x2

= 2x−2(x3− 1). The critical numbers are {0, 1} and so f(1) = 3,
f
(
1
2

)
= 17

4
and f(x) = 5. So max

I
{f(x)} = 5 and min

I
{f(x)} = 3.

(d) f ′(x) = 1−x2
(x2+1)2

. The critical numbers are {−1, 1} and so f(−1) = −1
2
, f(1) = 1

2
,

f(0) = 0 and f(2) = 2
5
. So max

I
{f(x)} =

2

5
and min

I
{f(x)} = −1

2
.

(e) f ′(x) = cos x−sinx. The critical number is
{
π
4

}
and so f(0) = 1 and f

(
π
4

)
=
√

2.

So max
I
{f(x)} =

√
2 and min

I
{f(x)} = 1.

(f) f ′(x) = 1 + 2 sinx. The critical numbers are
{−5π

6
, −π

6

}
and so f

(−5π
6

)
= −5π

6
+√

3, f
(−π

6

)
= −π

6
−
√

3, f(−π) = −π + 2 and f(−π) = π + 2. So max
I
{f(x)} =

π + 2 and min
I
{f(x)} = −π

6
−
√

3.

26. One must check that f(x) is continuous on [a, b] and differentiable (a, b), which is easily
done.

(a) f(b)−f(a)
b−a = 10−6

1−(−1) = 2. f ′(x) = 6x+ 2 so 6c+ 2 = 2⇒ c = 0

(b) f(b)−f(a)
b−a = 9−(−1)

2−0 = 5. f ′(x) = 3x2 + 1 so 3c2 + 1 = 5 ⇒ c = ± 2√
3
. But only

c = 2√
3

is in the interval [a, b].

(c) f(b)−f(a)
b−a = 1−0

1−0 = 1. f ′(x) = 1
3x2/3

so 1
3c2/3

= 1 ⇒ c = ± 1
33/2

. But only c = 1
3
√
3

is
in the interval.
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(d) f(b)−f(a)
b−a =

2
3
− 1

3

4−1 = 1
9
. f ′(x) = x+2−x

(x+2)2
= 2

(x+2)2
so

2

(c+ 2)2
=

1

9
⇒ 18 = (c+ 2)2 ⇒ c = ±3

√
2− 2

But only c = 3
√

2− 2 is in the interval.

27. f(0) = 3 and f(−1) = −8 and since f(x) is continuous everywhere, the Intermediate
Value Theorem gives the existence of a zero. Since f ′(x) = 5x4 + 10 > 0 for all x, the
zero is unique.

28. Suppose there is such a function. Then f(2)−f(0)
2−0 = 5

2
so by the Mean Value Theorem,

∃ c such that f ′(c) = 5
2
. But this contradicts the fact that f ′(x) ≤ 2 for all x. Thus no

such function can exist.

29. A function is increasing when f ′(x) > 0, decreasing when f ′(x) < 0, is concave up
when f ′′(x) > 0 and concave down when f ′′(x) < 0.

(a) f ′(x) = 6x2−6x−12 = 6(x−2)(x+1). So f(x) is increasing on (−∞,−1)∪(2,∞)
and decreasing on (−1, 2). It has a local max at (−1, 7) and a local min at
(2,−32).
f ′′(x) = 12x − 6. So f(x) is concave up on (−∞, 1/2) and concave down on
(1/2,∞). It has an inflection point at

(
1
2
,−13

2

)
(b) f ′(x) = 4x3− 12x = 4x(x2− 3). So f(x) is increasing on (−

√
3, 0)∪ (

√
3,∞) and

decreasing on (−∞,−
√

3) ∪ (0,
√

3). It has a local max at (0, 0) and local mins
at (−

√
3,−18) and (

√
3,−18).

f ′′(x) = 12x2 − 12. So f(x) is concave up on (−∞,−1) ∪ (1,∞) and concave
down on (−1, 1). It has an inflection point at (−1,−7) and (1, 7).

(c) h′(x) = 6x(x2 − 1)2. So f(x) is increasing on (0, 1) ∪ (1,∞) and decreasing on
(−∞,−1) ∪ (−1, 0) and has no local max and a local min at (0,−1).
h′′(x) = 6(x2− 1)2 + 24x2(x2− 1) = 6(x2− 1)(x2 + 4x− 1). So f(x) is concave up
on (−∞,−2−

√
5)∪(−1,−2+

√
5)∪(1,∞) and concave down on (−2−

√
5,−1)∪

(−2 +
√

5, 1). It has inflection points at x = ±1 and x = −2±
√

5

(d) P ′(x) =
√
x2 + 1+ x2√

x2+1
= (x2+1)−1/2(2x2+1). So f(x) is increasing everywhere

and has no local max or min.

P ′′(x) = x√
x2+1

+
2x
√
x2+1−x2 x√

x2+1

x2+1
= x(2x2+3)

(x2+1)3/2
. So P (x) is concave up on (0,∞)

and concave down on (−∞, 0). It has an inflection point at x = 0.

(e) Q′(x) =
√
x+ 1+ x

2
√
x+1

= (x+1)−1/2(2x+1). So f(x) is increasing on (−1/2,∞)

and decreasing on (−1,−1/2). It has a local min at x = −1
2
.
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Q′′(x) = 1
2
√
x+1

+
2
√
x+1−2x 1

2
(x+1)−1/2

4(x+1)
= 3x+4

4(x+1)3/2
. So Q(x) is concave up everywhere

and no inflection points.

(f) f ′(x) = 1− x−2/3 = x−2/3(x2/3 − 1). So f(x) is increasing on (−∞,−1) ∪ (1,∞)
and decreasing on (−1, 1). It has a local max at x = −1 and local min at x = 1.
f ′′(x) = 2

3
x−5/3. So f(x) is concave up on (0,∞) and concave down on (−∞, 0).

It has an inflection point at x = 0.

(g) f ′(t) = 1− sin t. So f(t) is increasing everywhere and has no local max or min.
f ′′(t) = − cos t. So f(t) is concave up on

(
−3π

2
,−π

2

)
∪
(
π
2
, 3π

2

)
and concave down

on
(
−2π,−3π

2

)
∪
(
−π

2
, π
2

)
∪
(
3π
2
, 2π
)
. f(t) has inflection points at t = ±3π

2
and

t = ±π
2
.

30. l’Hôpital’s rule is useful for these sort’s of limits. The tricks in b. , c. and e. are
particually useful.

(a) lim
x→∞

6x2 + 5x

(1− x)(2x− 3)
= lim

x→∞

6x2 + 5x

−2x2 − x− 3
= −3

(b) lim
x→∞

√
x2 + 4x

4x+ 1
= L ⇒ lim

x→∞

x2 + 4x

(4x+ 1)2
= lim

x→∞

x2 + 4x

16x2 + 8x+ 1
= L2 ⇒ L2 =

1

16
.

Thus the limit is 1
4
.

(c) lim
x→∞

√
x2 + 3x+ 1 − x = lim

x→∞

x2 + 3x+ 1− x2√
x2 + 3x+ 1 + x

. By using l’Hôpital’s Rule, the

limit is same as lim
x→∞

3
2x+3

2
√
x2+3x+1

+ 1
.

Now lim
x→∞

2x+ 3

2
√
x2 + 3x+ 1

= L⇒ lim
x→∞

4x2 + 12x+ 9

4(x2 + 3x+ 1)
= L2 Thus⇒ L = 1. Hence

the limit is 3
2
.

(d) lim
x→∞

1−
√
x

1 +
√
x

= lim
x→∞

−1
2
√
x

1
2
√
x

= −1 by l’Hôpital’s Rule.

(e) lim
x→∞

√
4x2 + 1

x+ 1
= L⇒ lim

x→∞

4x2 + 1

x2 + 2x+ 1
= L2 ⇒ L = 2

31. xy = 100 and S = x + y. Subsituting for y yields S = x + 100
x
⇒ S ′ = 1 − 100

x2
. The

critical number with x = 10 is a minimum and so x = y = 10.

32. A = xy = 3
2
. The perimeter of the fence P is given by P = 2y + 3x ⇒ P = 3

x
+ 3x.

Minimizing this function yields P ′ = − 3
x2

+ 3 and the critical number x = 1 yields a
minimum. Hence x = 1 and y = 3

2
. The units are in feet.
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33. V = 2x2y and the cost function is given by C = 10(2x2) + 6(2)(2xy) + 6(2)(xy) =
20x2 + 36xy since there is one side of area 2x2 at $10 per square foot, 2 sides of area
2xy and 2 sides of area xy at $6 per quare foot. Thus C = 20x2+ 180

x
⇒ C ′ = 40x− 180

x2
.

The critical number x = 62/3

2
corresponds to the minimum which makes the minimal

cost, Cmin ≈$163.54

34. Don’t forget +C!

(a) F (x) = 2x3 − 4x2 + 3x+ C

(b) F (x) = x− 1
4
x4 + 5

6
x6 − 3

8
x8 + C

(c) F (x) = 4x5/4 − 4x7/4 + C

(d) F (x) = −5
2
x−8 + C

(e) F (x) = − 3
x

+ 5
x3

+ C

35. For the solutions, C α, β and γ are arbitrary constants.

(a) ⇒ f ′(x) = 3x2 + 4x3 + α⇒ f(x) = x3 + x4 + αx+ β

(b) ⇒ f ′(x) = x+ 5
9
x9/5 + α⇒ f(x) = 1

2
x2 + 25

126
x14/5 + αx2 + β

(c) ⇒ f ′′(t) = 20t3 + α⇒ f ′(t) = 5t4 + αt+ β ⇒ f(t) = t5 + αt2 + βt+ γ

(d) ⇒ f ′′(t) = 1
2
t2 − 2

3
t3/2 + α⇒ f ′(t) = 1

6
t3 − 4

15
t5/2 + αt+ β

⇒ f(t) = 1
24
t4 − 8

105
t7/2 + αt2 + βt+ γ

(e) ⇒ f(x) = x− 1
x

+C. Since f(1) = 2, we have that c = 2 hence f(x) = x− 1
x

+ 2.

(f) ⇒ f(x) = 3 sinx − 5 cosx + C. Since f(0) = 4, we have that c = 9 and so
f(x) = 3 sinx− 5 cosx+ 9

(g) ⇒ f ′(x) = 4x3−3x2+ 1
2
x2+α⇒ f(x) = x4−x3 = 1

6
x3+αx+β. Since f(0) = 1, we

have that β = 1 and since f(2) = 11 we have α = 1
3
. Thus f(x) = x4− 5

6
x3+ 1

3
x+1.

36. Use the formula that the Riemann Sum is the sum of the area of the rectangles. In
each case, assume you use n, an aribtrary number of rectangles. Note that I have used
Right Handed Sums.

(a) We have that the width of each rectangle is 8
n

and the height is given by the

function value. Thus the area is given by lim
n→∞

(
n∑
k=1

8

n
3

√
k

n

)
.

(b) The width of each rectangle is π
n

and so the area is given by

lim
n→∞

(
n∑
k=1

π

n

[(
π +

kπ

n

)
+ sin

(
π +

kπ

n

)])
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37. I will use a right hand sum to estimate the areas. Note that for n = ∞, this is given
by the definite integral.

(a) i. The width of each rectangle is 2 and the heights are 4 and 10 so the area is
28.

ii. The width of each rectangle is 1 and the heights are 1, 4, 7 and 10 so the area
is 22.

iii.

∫ 3

−1
(1 + 3x) dx = x+

3

2
x2
∣∣∣3
−1

= 3 +
3

2
(9)−

(
−1 +

3

2

)
= 16

(b) i. The width of each rectangle is 1 and the heights are 1 and −2 so the area is
−1.

ii. The width of each rectangle is 1
2

and the heights are 3
4
, 1 −1

4
and −2 so the

area is −1
4

.

iii.

∫ 2

0

(2− x2) dx = 2x− 1

3
x3
∣∣∣2
0

= 4− 8

3
=

4

3

(c) i. The width of each rectangle is 2 and the heights are 17 and 129 so the area
is 292.

ii. The width of each rectangle is 1 and the heights are 3, 17, 55 and 129 so the
area is 204.

iii.

∫ 4

0

(1 + 2x3) dx = x+
1

2
x4
∣∣∣4
0

= 4 + 128 = 132

38. Drawing a picture will help.

(a) The area of the square is 9 and the area of the triangle is 4 so the integral is 13.

(b) The area of the rectangle is 3 and the area of the semicircle is 9π
4

so the integral
is 3 + 9π

4
.

(c) The area of the “outside” rectangles are both −1
2

and the area of the “inside”
rectangle is 1 so the integral is 0.

39. This is the Fundamental Theorem of Calculus.

(a) g′(x) =
√

1 + 2x

(b) g′(y) = y2 sin y

(c) f(x) = − cos(x2) since −F (x) =

∫ x

2

cos(t2) dt

(d) − tanx

(e) 2x
√

1 + x4

11



(f) 3x2 sin(x3)

40. (a) ⇒= 5
3
x3 − 2x2 + 3x

∣∣∣2
1

= 26
3

(b) ⇒= 1
10
x10− 1

3
y6 + 3

2
y2
∣∣∣1
0

= 19
15

(c) ⇒= 1
3
t3 + t−1

∣∣∣2
1

= 11
6

(d) ⇒=

∫ 2

0

(x6 − 2x3 + 1) dx =
1

7
x7 − 1

2
x4 + x

∣∣∣2
0

=
86

7

(e) ⇒=

∫ 1

−1
− 3x2 + x+ 2 dx = −x3 +

1

2
x2 + 2x

∣∣∣1
−1

= 2

(f) ⇒= − cscx
∣∣∣π/2
π/3

= 2
√
3

3
− 1

41. The total area bound by a curve y = f(x) is given by

∫ b

a

|f(x)| dx

(a)

∫ −4
−2

∣∣3x− 1
∣∣ dx =

∫ 1/3

−2
1− 3x dx+

∫ 4

1/3

3x− 1 dx

⇒= x− 3
2
x2
∣∣∣1/3
−2

+ 3
2
x2 − x

∣∣∣4
1/3

= 85
3

(b)

∫ 3

−3
|x2 − x− 2| dx =

∫ −1
−3

x2 − x− 2 dx+

∫ 2

−1
2− x− x2 dx+

∫ 3

2

x2 − x− 2 dx

⇒= 1
3
x3 − 1

2
x2 − 2x

∣∣∣−1
−3

+ 2x− 1
2
x2 − 1

3
x3
∣∣∣2
−1

+ 1
3
x3 − 1

2
x2 − 2x

∣∣∣3
2

= 12
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42. These are done using a u substitution. Don’t forget the +C!

(a) Let u = 1− x4 ⇒= −1
4

∫
u5 du = − 1

24
u6 + C = − 1

24
(1− x4)6 + C

(b) Let u = 2− x ⇒= −
∫
u6 du = −1

7
u7 = −1

7
(2− x)7 + C

(c) Let u = x2 + 1 ⇒= 1
2

∫
u3/2 du =

1

5
u5/2 =

1

5
(x2 + 1)5/2 + C

(d) Let u = 1− 3x ⇒= −1
3

∫
1

u4
du =

1

9
u−3 + C =

1

9
(1− 3x)−3 + C

(e) Let u = 3− 5x ⇒= −1
5

∫
u1/5 du = −1

6
u6/5 + C = −1

6
(3− 5x)6/5 + C

(f) Let u = 3x ⇒= 1
3

∫
sec2 u du =

1

3
tanu+ C =

1

3
tan(3x) + C

(g) Let u = 1 +
√
x ⇒= 2

∫
u9 du =

1

5
u10 + C =

1

5
(1 +

√
x)10 + C

(h) Let u = π
x
⇒= − 1

π

∫
cosu du = − 1

π
sinu+ C = − 1

π
sin
(π
x

)
+ C

(i) Let u = secx ⇒=

∫
u2 du =

1

3
u3 + C =

1

3
sec3 x+ C

43. These are also done using a u substitution. Don’t forget to change the limits of inte-
gration!

(a) Let u = 4 + 3x ⇒= 1
3

∫ 25

4

√
u du =

2

9
u3/2

∣∣∣25
4

=
112

9

(b) Let u = x2 ⇒= 1
2

∫ π

0

cosu du =
1

2
sinu

∣∣∣π
0

= 0

(c) Let u = 4t ⇒= 1
4

∫ π

0

sinu du = −1

4
cosu

∣∣∣π
0

=
1

2

(d) Let u = 1 + 1
x
⇒= −

∫ 5/4

2

√
u du = −2

3
u3/2

∣∣∣5/4
2

= −2

3

(
5
√

5

8
− 2
√

2

)

(e) Let u = πt ⇒= 1
π

∫ π

0

cosu du = − 1

π
sinu

∣∣∣π
0

= 0

(f) Let u = a2 − u2 ⇒= −1
2

∫ 0

a2

√
u du =

1

2

∫ a2

0

√
u du =

1

3
u3/2

∣∣∣a2
0

=
a3

3
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44. Observe that f(x) = x2 sinx
1+x6

is an odd function since f(−x) = −f(x) so

∫ π/2

−π/2

x2 sinx

1 + x6
dx =

0

45. Let u = x2. Then

∫ 1

0

x
√

1− x4 dx =
1

2

∫ 1

0

√
1− u2 du. The last integral is the area

of a quater-circle with radius 1. Thus the integral is π
8
.

46. Let u = x2 then

∫ 3

0

xf(x) dx =
1

2

∫ 9

0

f(u) du = 2

47. Observe that

∫ 2+h

2

√
1 + t3 dt =

∫ 2+h

0

√
1 + t3 dt −

∫ 2

0

√
1 + t3 dt = f(2 + h) − f(2)

where f(x) =

∫ x

0

√
1 + t3 dt. Thus by the definition of the derivative:

lim
h→0

1

h

∫ 2+h

2

√
1 + t3 dt = f ′(2)

By the Fundamental Theorem of Calculus, f ′(x) =
√

1 + x3 and so

lim
h→0

1

h

∫ 2+h

2

√
1 + t3 dt =

√
1 + 8 = 3
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