Math 1300 Midterm 3 November 16, 2015

1. (a) (4 points) Explain why if g(z) is a polynomial, it is guaranteed to have an absolute

minimum and an absolute maximum on [—1,2].
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(b) (10 points) Use the closed interval method to find the absolute maximum and ab-

solute minimum of the function

g(z)=2*—62°+5

on the interval [—1,2]. Show your work.
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2. (12 points) For each of the following criteria, choose the graph of f(t) which most accu-

rately reflects the given information on the interval [—1, 1].
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3. Consider the following information about a function f(z) and the signs of its derivatives.
Note: A closed circle indicates that the corresponding derivative has a zero at that z-

value, and an open circle indicates that the corresponding derivative is undefined at that

z-value.
lim £(@) = £(1) = ~1
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(a) (4 points) List the critical number(s) of f(x) and classify each as a local minimum

of f(x), alocal maximum of f(z), or neither. Fully justify your answer. ,
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(b) (4 points) At which z-value(s) does f(x) have inflection point(s)? Fully justify your
answer.
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(c) (6 points) Sketch a possible graph of f(z) and mark all local extrema and inflection

points.
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4. (12 points) Circle the best answer for the value of each limit below. You do not need to
show any work.
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5. (4 points) Circle an antiderivative of the function f(z) from the choices given. You do

not need to show any work.
f(z) = az® 4+ ba® + cx + d, (a,b,c,d constants)
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6. (4 points) The function f(x) is given by this graph:
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Circle an antiderivative of the function f(z) from the choices given. You do not need to

show any work.
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7. (12 points) Farmers can get 40 dollars per bale of hay on June 1, and after that, the
price drops by 1 dollar per bale per extra day. On June 1, a farmer has 10 bales of hay
in the field, and estimates that the crop is increasing at the rate of 1 bale per day. The
farmer is trying to determine on which day to harvest the hay in the field.

(a) What is a formula for the price, P(z), of a bale of hay, where z is the number of

days after June 17 P(X} - LFD WX

(b) What is a formula for the quantity of bales of hay, @(z), where z is the number of

days after June 17 & (}(\) - /0 + X

(c) If the revenue function, R(z), is defined as R(z) = P(z)Q(z), when should the

farmer harvest the hay to maximize the farmer’s rgyenue?
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(d) Justify that the absolute maximum revenue occurs on the day you found above.
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| ef 4= X
8. (10 points) Find lm 3z%®. Show your work. a
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9. (8 points) Find the most general antiderivative for the function
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10. (10 points) Phillip went for a hike. He recorded his velocity at 15 minute intervals.

Phillip created the following chart. R T R 2
¢ e RFeT  REcr
< I8

' ol ‘ 2
T 3- ! 3
t (in hours) 0l.25| .5 |.75]1]|125|15]175]2
1501|217 2|25 (3

velocity (in miles per hour) | .5 | .75

Approximate how far Phillip hiked in the 2 hours he recorded using 4 rectangles and
right-hand endpoints. (In other words, use a right Riemann sum with n = 4.) Include

units in your answer.
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