

1

2
3

4

7

10

5

8

11

D

E
F

G

H
I

J

K
L
$f^{\prime \prime \prime}(x)$ switches signs at $x=-1$.
@
$f(x)$ is always concave down because $f^{\prime}(x)$ is always decreasing.

$$
\int_{0}^{2} f^{\prime}(x) d x=0
$$

$f(x)$ and $f^{\prime}(x)$ are both periodic with period 2π.
∞
$f(x)=x^{3}-x$.
\&
$f^{\prime}(0)=f^{\prime \prime}(0)=0$ and $f^{\prime \prime}(x)$ exists everywhere.
$f(x)$ has an inflection point at $x=1$ because $f^{\prime \prime}(x)$ switches signs at $x=1$.
$f^{\prime \prime}(x)$ is undefined at $x=1$.
$f^{\prime}(x)$ has a jump discontinuity at $x=0$.
$f^{\prime}(x)>0$ and $f^{\prime \prime}(x)=0$ everywhere.

Solutions Table:

Function	Derivative	Description

