

13 14 15

- f'''(x) switches signs at x = -1.
- f(x) is always concave down because f'(x) is always decreasing.
- f(x) has an inflection point at x = 1 because f''(x) switches signs at x = 1.

(Q)

?

f(x) has a vertical tangent line at x = -1.

$$\int_0^2 f'(x) \, dx = 0.$$

f''(x) is undefined at x = 1.

0

!

⇒

f(x) has a local minimum at x = -1 because f'(x) switches signs from negative to positive there. f''(x) is constant.

f(x) and f'(x) are both periodic with period 2π .

f'(x) has a jump discontinuity at x = 0.

Δ

 ∞

f'(x) < 0 and f''(x) = 0 everywhere.

$$f(x) = x^3 - x.$$

f'(x) > 0 and f''(x) = 0 everywhere.

*

&

÷

$$f'(0) = f''(0) = 0$$
 and $f''(x)$ exists everywhere.

Solutions Table:

Function	Derivative	Description