MATH 1300: Diagnostic Exam

Name:

Directions: Circle the correct answer for each multiple choice problem below. This test should take you less than one hour.

1.
$$(x+3)^2 =$$

(a) $x^2 + 3$
(b) $x^2 + 9$
(c) $x^2 + 6x + 9$
(d) $x^2 + 9x + 9$

2.
$$\begin{pmatrix} \frac{x^{\frac{2}{3}}y^{\frac{3}{2}}}{x^{2}y} \end{pmatrix}^{6} =$$
(a) $y^{8}x^{8}$
(b) $y^{3}x^{-8}$

(c)
$$4x^3y^8$$

(d) x^4y^{-2}

(d)
$$x^4y^-$$

3.
$$\frac{x}{x+5} =$$

(a) $\frac{1}{5}$
(b) $1 + \frac{1}{5}$
(c) 1

4.

(d) None of the above.

$$sin^{2}(\theta) + cos^{2}(\theta) =$$
(a) 0
(b) 1
(c) $(sin(\theta) + cos(\theta))^{2}$

(d)
$$\tan^2(\theta)$$

- 5. $\frac{3}{4} + \frac{1}{3} \frac{x}{6} =$ (a) $\frac{13 - 2x}{12}$ (b) $\frac{4 - x}{12}$ (c) 4 - x(d) None of the above. 6. $4^{\frac{3}{2}} =$
 - (a) 6
 - (b) 8
 - (c) 64
 - (d) None of the above.

7. If
$$\sin(\theta) = \frac{1}{2}$$
 and θ is in quadrant II, then $\cos(\theta) =$

(a)
$$\frac{2\pi}{3}$$

(b) $-\frac{1}{2}$
(c) $\frac{\sqrt{3}}{2}$
(d) $-\frac{\sqrt{3}}{2}$
(e) $\frac{-\sqrt{3}}{2}$
(f) $\frac{-x^2}{y^2}$
(g) $\frac{1}{x^2y^2}$
(h) $\frac{1}{x^2y^2}$
(c) $\frac{y^2}{x^2}$
(d) None of the above.
9. Simplify $\frac{(x^2 + 2x - 3)(x + 2)}{(x + 2)(x - 1)}$.
(a) $x + 3$

(b)
$$\frac{x^3 + 4x^2 + x - 6}{x^2 + x - 2}$$

(c)
$$\frac{x^2 + 2x - 3}{x - 1}$$

(d) None of the above.

10. Simplify $\frac{4x^2 + 6x}{2x}$.

- (a) 5
- (b) 5*x*
- (c) 2x + 3
- (d) None of the above.

11. $\cos \frac{2\pi}{3} =$

- (a) $\frac{1}{2}$
- (b) $\frac{-1}{2}$
- (c) $\frac{\sqrt{3}}{2}$
- (d) $\frac{-\sqrt{3}}{2}$

12. $\arctan(-1)$ may equal which of the following?

- (a) 1
- (b) $\frac{\pi}{4}$
- (c) $\frac{-\pi}{4}$
- (d) $\frac{\sqrt{2}}{2}$

13. Simplify the following expression: $\sqrt{49 + \pi^2}$

- (a) $49 + \pi$
- (b) $7 + \pi$
- (c) 7π
- (d) The expression cannot be simplified further.

14. Simplify the expression: $\sqrt{\left(2x^2\sqrt{y}\right)^4}$

- (a) $\frac{4x}{y}$
- (b) $4x^2y^4$
- (c) $16xy^2$
- (d) $4x^4y$
- (e) $\sqrt[8]{\left(2x^2\sqrt{y}\right)}$

15. Simplify the expression: $\frac{\cos x}{\cos x \sin^2 x + \cos^3 x}$

- (a) $\cos x$
- (b) 1
- (c) $\frac{1}{\cos x}$
- (d) $\sin x$

16. Solve the equation $e^{4x-1} = 1$.

- (a) $\frac{1}{2}$
- (b) 0
- (c) $\frac{1}{4}$
- (d) $\ln \frac{1}{4}$
- (e) no solutions
- 17. Evaluate $\log_2 \frac{1}{16}$
 - (a) 4
 - (b) 8
 - (c) -4
 - (d) -8
 - (e) 2

Short Answer

18. Find the equation for a circle with radius 3 and center (-1, 2)

19. Find the vertex of the parabola $y = 2x^2 + 3x - 5$

20. If an object makes 3 rotations per minute around a circle of radius 3 ft, determine its angular and linear velocities.

21. Two cars start at the same point. Car A heads due south at 60 km/h, while car B heads due east at 80 km/h. How far apart are the two cars after 2 hours?

22. A circular cone with a base radius of 12 cm and a height of 4 cm is turned upside down (standing on its vertex) and filled with water. What is the total volume of water when it has a depth of 6 cm? (Remember that the volume of a cone is given by $V = \frac{1}{3}\pi r^2 h$.)

23. A man is standing 8 ft from a light pole. At that point he is casting a 12 ft shadow. If the man is 6ft tall, how high is the light pole?

24. What is the *y*-intercept of the function $x^3 - 4x^2 + 12x - 25$

25. Find the solution to: $\left|\frac{5-3x}{4}\right| < 5.$

26. Find the distance between the two points (-1, 2) and (0, 4).

27. Find the slope of the line passing through the points (-5, -2) and (1, 4).

28. Factor: $2x^3 + 8x^2 - 3x - 12$

29. Solve the equation $\log_3(x+6) - \log_3(x-2) = 2$

30. The population of a certain species of bacteria is given by $P(t) = 500(1.3)^t$. How long will it take the population to double? (Do not use a calculator for this problem. Your answer should be in terms of logarithms and numbers)

31. Find an equation for a polynomial with zeros at x = -2, x = 1, and x = 3.