11. B.

The angle $\frac{2 \pi}{3}$ lies between $\frac{\pi}{2}$ and π.
The major angle is therefore $\pi-\frac{2 \pi}{3}=\frac{\pi}{3}$.
Now, $\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}$.
Since $\frac{2 \pi}{3}$ is in quadrant II, $\cos \left(\frac{2 \pi}{3}\right)=-\cos \left(\frac{\pi}{3}\right)=-\frac{1}{2}$.
12. C.

The range of arctangent is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
Within this range, $\tan (x)=-1$ is satisfied by $x=-\frac{\pi}{4}$.
So $\arctan (-1)$ may be equal to $-\frac{\pi}{4}$.
13. D.
$49+\pi^{2}$ is not a perfect square, and consequently its square root cannot be simplified.
14. D.

In general, $\sqrt[n]{a}=a^{\frac{1}{n}}$.

$$
\begin{aligned}
\sqrt{\left(2 x^{2} \sqrt{y}\right)^{4}} & =\left(\left(2 x^{2} \sqrt{y}\right)^{4}\right)^{\frac{1}{2}} \\
& =\left(2 x^{2} \sqrt{y}\right)^{2} \\
& =2^{2}\left(x^{2}\right)^{2} \sqrt{y}^{2} \\
& =4 x^{2} y .
\end{aligned}
$$

15. B.

Recall $\cos ^{2}(x)+\sin ^{2}(x)=1$.

$$
\begin{aligned}
\frac{\cos (x)}{\cos (x) \sin ^{2}(x)+\cos ^{3}(x)} & =\frac{\cos (x)}{\cos (x)\left[\sin ^{2}(x)+\cos ^{2}(x)\right]} \\
& =\frac{\cos (x)}{\cos (x)[1]} \\
& =\frac{\cos (x)}{\cos (x)} \\
& =1 .
\end{aligned}
$$

16. \mathbf{C}.

$$
\begin{aligned}
e^{4 x-1} & =1 \\
\ln \left(e^{4 x-1}\right) & =\ln (1) \\
(4 x-1) \ln (e) & =\ln (1) \\
4 x-1 & =0 \\
4 x & =1 \\
x & =\frac{1}{4} .
\end{aligned}
$$

17. \mathbf{C}.

$$
\frac{1}{16}=2^{-4}, \text { and thus } \log _{2}\left(\frac{1}{16}\right)=\log _{2}\left(2^{-4}\right)=-4
$$

18. Recall the equation of a circle with radius r centered at $(h, k):(x-h)^{2}+(y-k)^{2}=r^{2}$. So our desired equation is $(x+1)^{2}+(y-2)^{2}=3^{2}$.
19. Given a quadratic equation of the form $y=a x^{2}+b x+c$, the x-coordinate of the vertex is given by:
$x=-\frac{b}{2 a}$.
Therefore, $x=-\frac{3}{4}$.
We then evaluate $f\left(-\frac{3}{4}\right)=2\left(-\frac{3}{4}\right)^{2}+3\left(-\frac{3}{4}\right)-5=-\frac{49}{8}$.
So the vertex is located at $\left(-\frac{3}{4},-\frac{49}{8}\right)$.
20. Since 1 full revolution corresponds to 2π radians, 3 revolutions/minute corresponds to $2 \pi * 3=6 \pi$ radians/minute.
The angular speed, ω, of the object is therefore $6 \pi / \mathrm{min}$.

Given an angular speed ω, the linear speed, v, of an object traveling in a circle of radius r is given by:
$v=\omega r$.
So $v=(6 \pi) * 3=18 \pi \mathrm{ft} / \mathrm{min}$.

