1. C.

In general, $(a+b)^{2}=a^{2}+2 a b+b^{2}$
So $\quad(x+3)^{2}=x^{2}+2 x(3)+3^{2}=x^{2}+6 x+9$
2. B.

$$
\left(\frac{x^{\frac{2}{y} y^{\frac{3}{2}}}}{x^{2} y}\right)^{6}=\left(x^{\frac{2}{3}-2} y^{\frac{3}{2}-1}\right)^{6}=\left(x^{-\frac{4}{3}} y^{\frac{1}{2}}\right)^{6}=x^{\left(-\frac{4}{3}\right)(6)} y^{\left(\frac{1}{2}\right)(6)}=x^{-8} y^{3}=y^{3} x^{-8}
$$

3. D.

The answer is "None of the above", since none of the answers contain x, and the x 's in the numerator and denominator CANNOT be canceled. Only common factors can be cancelled, but the x in the denominator is a term. Factors are quantities multiplied or divided by one another (these can be cancelled), whereas terms are quantities added or subtracted from one another (these cannot be cancelled). If you cancel the x 's (which is incorrect), you might think the given expression would equal $\frac{1}{5}$. But notice that if $x=2$ for example, then the given expression equals $\frac{2}{7}$, and if $x=3$ for example, then the given expression equals $\frac{3}{8}$ You can see that the value of the given expression does depend on x. Bottom line: the x 's cannot be cancelled.
4. B.

$$
\sin ^{2}(\theta)+\cos ^{2}(\theta)=1
$$

This is The Fundamental Trig Identity.
5. A.

The least common denominator for 4 , 3 , and 6 is 12 . So make all denominators equal to 12 . Then you can add and subtract in the numerator.

$$
\frac{3}{4}+\frac{1}{3}-\frac{x}{6}=\frac{(3)(3)}{(4)(3)}+\frac{(1)(4)}{(3)(4)}-\frac{(x)(2)}{(6)(2)}=\frac{9}{12}+\frac{4}{12}-\frac{2 x}{12}=\frac{9+4-2 x}{12}=\frac{13-2 x}{12}
$$

6. B.

$$
4^{\frac{3}{2}}=\sqrt{4^{3}}=\sqrt{64}=8 \quad \text { or } \quad 4^{\frac{3}{2}}=(\sqrt{4})^{3}=2^{3}=8
$$

7. D.

$$
\begin{aligned}
& \sin ^{2}(\theta)+\cos ^{2}(\theta)=1 \quad \text { so } \\
& \cos ^{2}(\theta)=1-\sin ^{2}(\theta) \quad \text { so } \\
& \cos ^{2}(\theta)=1-\left(\frac{1}{2}\right)^{2} \quad \text { since } \sin (\theta)=\frac{1}{2} \\
& \cos ^{2}(\theta)=1-\frac{1}{4}=\frac{3}{4} \quad \text { so } \\
& \cos (\theta)= \pm \sqrt{\frac{3}{4}}= \pm \frac{\sqrt{3}}{2}
\end{aligned}
$$

But if θ is an angle in quadrant II, then $\cos (\theta)<0$
So $\cos (\theta)=-\frac{\sqrt{3}}{2}$
8. B.

$$
\frac{x^{-2}}{y^{2}}=\left(x^{-2}\right) \frac{1}{y^{2}}=\frac{1}{x^{2}} \frac{1}{y^{2}}=\frac{1}{x^{2} y^{2}}
$$

9. A.
$\frac{\left(x^{2}+2 x-3\right)(x+2)}{(x+2)(x-1)}=\frac{(x+3)(x-1)(x+2)}{(x+2)(x-1)}=x+3$
after dividing numerator and denominator by $(x-1)$ and $(x+2)$,
$x+3$ is a simplification of the given expression, but it is a different function than the given expression because their domains are different. The given expression has domain all real numbers except $x=1$ and $x=-2$ (because division by 0 is not allowed), while the simplified expression $x+3$ has domain all real numbers.

10. C.

$\frac{4 x^{2}+6 x}{2 x}=\frac{2 x(2 x+3)}{2 x}=2 x+3$ after dividing numerator and denominator by $2 x$
As in $\# 9,2 x+3$ is a simplification of the given expression, but it is a different function than the given expression because their domains are different. The given expression has domain all real numbers except $x=0$ (because division by 0 is not allowed), while the simplified expression $2 x+3$ has domain all real numbers.

